THE UNIVERSITY OF MARYLAND, BALTIMORE COUNTY (UMBC)
 Department of Mechanical Engineering

ENME677-Applied Elasticity
 Spring 2015

Credits:	$\mathbf{3}$
Instructor:	Panos G. Charalambides
Office:	209 \& 211 Engineering Building
Tel. No.:	(410) 455-3346

Outline

In this course, the basic concepts of deformation strain and stress are treated as vector and tensor quantities of known mathematical properties. Thus, initially, the tool of indicial notation will be used throughout to effectively reduce the complexity arising from the 3-dimensional nature of the above quantities. The 3D eigenvalue problem will be presented as needed to explore the 3dimensional nature of the stress and strain tensors. The deformations within the continuum will be derived in terms of a large deformation gradient composed of a deformational and a rotational part. Small strains and deformations will be obtained via a linearization procedure. The physical principle of conservation of mass together with the balance laws of linear and angular momentum will be employed to derive the equations of motion and boundary conditions for the elastic continuum. The elasticity boundary value problem (bvp) will then be formulated in the stress/deformation space through the equations of motion, compatibility, stress-strain relations and boundary conditions. A reduced set of equations will be presented for the plane stress/strain problems in both the Cartesian and Polar coordinates. Methods in solving the boundary value problem and various elasticity solutions will be presented. The second part of the course will focus on solving a broad range of elasticity problems that include polar and spherical symmetry displacement formulations, planar (2D) stress and Airy stress function formulation, 3D torsion and bending, fracture mechanics, non-dimensional methods and if time allows, approximate numerical methods. The extensive use of elasticity in understanding the mechanics of modern composites will be highlighted.

THE UNIVERSITY OF MARYLAND, BALTIMORE COUNTY (UMBC)

Department of Mechanical Engineering

ENME677-Applied Elasticity			
Credits:	3		
Instructor:	Panos G. Charalambides		
Office:	211 Engineering Building		
Tel. No.:	(410) 455-3346		
Lectures	MW 10:00-11:15 a.m. (ITE239)		
Office Hours:	MW 4:00-5:00 p	y appointment.	
Textbook:	Boresi, A.P. \& C 3rd edition Elsevi	N. Elasticity in e Publishers Co	Mechanics 7.
Grading Policy	Homework 40\%	Midterm 30\%	Final Exam

List of books for complementary reading

Elasticity

Sokolnikoff I. S

Timoshenko S.
\& Goodier J. N. Love A. E. H.

Muskhelishvili N. I

Green A. E. and Zerna W.

Gurtin M.E.

Oden, Ripperger

Continuum Mechanics

Malvern, L. E.

Lai, W.M., Rubin, D.
And Krempl, E.

Ziegler, H .
Fung, Y.C.

Prager, W.

Truesdell, C. and Touplin, R.A.

Truesdell, C. and Noll

Mathematical Linear Theory of Elasticity, 2nd Edition, (McGraw-Hill), 1956.

Linear Theory of Elasticity, 2nd Edition, (McGraw-Hill), 1951.

A Treatise on the Mathematical Linear Theory of Elasticity, 4th Edition, (Cambridge University Press), 1927; (reprinted by Dover), 1944.

Some Basic Problems of the Mathematical Theory of Elasticity, translated by J. R. M. Radok, (P. Noordhoff Ltd.),1963

Theoretical Elasticity, Clarendon Press-Oxford, 1954.

The Linear Linear Theory of Elasticity, In Encyclopedia of Physics (ed. S. Flugge) Vol. 6a/2, Springer-Verlag, 1975.

Mechanics of Elastic Structures, 2nd Ed., McGraw-Hill, 1981.

Introduction to the Mechanics of a Continuous Medium (Prentice-Hall), 1969.

Introduction to Continuum Mechanics
(Elsevier Ltd., ISBN 978-0-7506-8560-3), 2010.

An Introduction to Thermodynamics, North-Holland, 1977
Foundations of Solid Mechanics, Prentice-Hall, 1965

Introduction to Mechanics of Continua, Ginn and Co., 1961; Reprinted by Dover, 1973

The Classical Field Theories, in Encyclopedia of Physics (ed. S. Flugge) Vol. 3/3, Springer-Verlag, 1960

The Non-linear Field Theories of Mechanics in Encyclopedia of Physics (ed. S. Flugge) Vol. 3/3, Springer-Verlag, 1975.

THE UNIVERSITY OF MARYLAND, BALTIMORE COUNTY (UMBC)
 Department of Mechanical Engineering

ENME677-Applied Elasticity

Credits:	$\mathbf{3}$
Instructor:	Panos G. Charalambides
Office:	209 Engineering Building
Tel. No.:	(410) 455-3346

OUTLINE OF TOPICS

OTHER TOPICS IN ELASTICITY

3-Dimensional problems of elastostatics
Concentrated forces
Kelvin and Boussinesq problems
Singular solutions
St. Venant principle
Boundary layer theory
Eshelby's homogeneous strain transformation problems
General strain transformation problems
Voltera's theory of dislocations
Contact problems

Variational Methods in Elasticity
Variational problems and Euler's equations
Minimum potential energy principle
Minimum complementary energy principle
The Ritz method
The Galerkin method
The method of Kantorivich
The Trefftz method
Finite element method, etc.
Elastodynamics
Suddenly introduced line load in an infinite medium
Lamb's problem
Various waves in an elastic medium
Propagation and reflection of waves, etc.
Topics of Research Interest
Hilbert-Arc problem \& Near -tip elasticity for cracks at bimaterial interfaces.
Elasticity of layered media
Thermal stresses in composites \& electronic packaging
Elasticity of Porous Media
Damage mechanics (Self consistent and differential methods)
Anisotropy \& elasticity of composite media
Non-linear elasticity
Visco-elastic response
Elastica problem

Weekly Time Schedule

Time	Monday	Tuesday	Wednesday	Thursday	Friday
$8: 00-9: 00$					
$9: 00-10: 00$					
$10: 00-11: 00$					
$11: 00-12: 00$					
$12: 00-1: 00$					
$1: 00-2: 00$					
$2: 00-3: 00$					
$3: 00-4: 00$					
$4: 00-5: 00$					
$5: 00-6: 00$					

Please indicate conflict hours on the above time schedule and return to me as soon as possible for alternative meeting arrangements.
\qquad Date \qquad

