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Abstract

A stress induced supercritical non-linear microcracking model is employed as part of an incremental and iterative

hierarchical modeling scheme aimed at investigating the evolution of damage in brittle matrix plain weave fabric

composites subjected to uniaxial tension. The study focuses exclusively on matrix micro-damage and its effect on the

macroscopic non-linear composite response. For a given load increment, the requisite micro-stresses and associated

state of matrix microcracking are updated through an iterative converging scheme that employs the semi-analytical

approximate model to compute micro-stresses and the discrete microcracking model to evaluate micro-damages. A wide

range of non-linear stress–strain curves were obtained through parametric studies. Degradation of the in-plane effective

properties of the unit-cell and evolution of the volumetric matrix damage were monitored throughout the simulations.

The simulated predictions were then used to develop empirical in-plane effective property degradation laws in terms of

the applied loading. Damage-induced macroscopic elastic anisotropies were predicted as was the formation of mac-

roscopic damage zones consistent with discrete micro-fracture events such as inter-bundle matrix cracking, bundle

mode-I cracking, and transverse bundle matrix cracking. Stress–strain curves obtained from the model were compared

favorably with their experimental counterparts obtained from literature and commercial sources.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This work which builds on previous research

(Kuhn and Charalambides, 1998a,b, 1999; Kuhn

et al., 1999, 2000) aims at investigating the effects of
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microcrack formation (Fu and Evans, 1985;

Charalambides and McMeeking, 1987) and matrix

damage evolution on the non-linear response of a

plain weave ceramic matrix composite (CMC). In

contrast to the previous work (Kuhn et al., 2000), in
this study, supercritical stress-induced microcrack-

ing conditions are employed in the non-linear

damage evolution model development. The con-

cept of supercriticality in microcracking is some-

what analogous to the same concept employed in
ed.

mail to: panos@umbc.edu


1108 S.I. Haan et al. / Mechanics of Materials 35 (2003) 1107–1126
modeling phase transformation of particle reinfor-

ced ceramic composites such as zirconia toughened

alumina (Lambropoulos, 1988), wherein zirconia

particles are assumed to transform completely from

a tetragonal phase to a monoclinic phase when

subjected to a critical hydrostatic pressure.
Supercritical microcracking employed herein,

models a similar behavior in which at a critical

stress level material points in the continuum are

assumed to exhaust their microcracking potential

and thus, are assigned the maximum allowed mi-

crocrack density which is often referred to as the

saturation microcrack density denoted by �s. Un-

like the subcritical microcracking case addressed in
the work by Kuhn et al. (2000), wherein appre-

ciable transient microcrack zones are predicted

between the zero-damage zone and the saturated

zone, in this supercritical case, the transient zone

would be non-existent giving rise to abrupt chan-

ges in the state of damage along the boundaries of

the microcrack damage zone. To a certain extent,

this condition may be more representative of the
cracking processes observed in CMCs wherein

regularly spaced bridged and unbridged matrix

cracks are common types of micro-failure.

Like the subcritical microcracking study pre-

sented in the work by Kuhn et al. (2000), the focus

of this work is also on the matrix damage evolu-

tion and its effects on the non-linear response of a

plain weave CMC. Thermal stress effects induced
by constituent thermal expansion mismatch are

not considered. Thus, simulations and compari-

sons to experiments reported in this study are re-

stricted to a SiC/SiC system for which thermal

stresses are negligible as reported by Wang and

Singh (1994). A detailed presentation of the model

development can be found in the work by Kuhn

et al. (2000). For a brevity purpose, we shall pro-
ceed to present only a short summary of the gen-

eral modeling scheme, while presenting the

supercritical microcracking aspect of the model in

greater detail.
2. General modeling approach

The non-linear supercritical microcracking

damage model presented in this work is comprised
of the linear model predicting the elastic micro-

fields in the woven unit-cell and the microcracking

model to compute and update the status of mi-

crocracking damage in the system. Detailed de-

scriptions of the sub-models employed in the

integrated linear model as well as more thorough
accounting of the subcritical microcracking model

are presented in the work by Kuhn et al. (2000).

Thus, the linear part of the model will be briefly

reviewed earlier in the section and then, the su-

percritical microcracking condition will be ad-

dressed in greater detail.
2.1. Linear elastic woven unit-cell micro-fields

The model employed the woven unit-cell geo-

metry developed by Kuhn and Charalambides

(1999), which was inspired by a few pioneering

works of Ishikawa and Chou (1982a,b, 1983a,b)

and Whitcomb (1991). In this geometry model, the

woven composite is treated as a composite lami-
nate with four non-uniform layers. Extensive dis-

cussion on each of the geometry features and the

detailed presentation of the surface functions used

to represent the top and bottom surface of each

layer can be found in the work by Kuhn and

Charalambides (1999). The woven unit-cell is

comprised of the warp tows, the fill tows, and the

inter-bundle matrix phases at the mesoscopic scale
as shown in Fig. 1a. A rigorous hierarchical mi-

cro-mechanics model utilizing the Hashin com-

posite cylinder assemblage model (see Hashin,

1983) and the porous solid model employed by

Bassani (1991), used for bundle homogenization is

fully presented in the work by Kuhn and Chara-

lambides (1998a). The boundary value problem

under consideration is that associated with uni-
axial tension in the x-direction. The remotely ap-

plied uniaxial loading F1
x on a woven ply is

simulated with the displacement boundary condi-

tions applied to the symmetric woven unit-cell

using appropriate symmetry conditions as dis-

cussed by Kuhn et al. (1999). The unit-cell ge-

ometry, material properties, and boundary

conditions outlined above constitute an elasticity
boundary value problem in three-dimensions. The

problem is reduced to a two-dimensional plate
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Fig. 1. (a) The woven unit-cell comprised of four mesoscopic phases: the lower matrix, the fill tow, the warp tow, and the upper matrix.

(b) Hierarchical schematics presenting a typical microstructure of CVI ceramic matrix plain weave composite.
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elasticity boundary value problem by employing

the Kirchhoff–Love deformation hypothesis and

its approximate analytical solutions are obtained

by the Rayleigh–Ritz method, which is compre-

hensively discussed by Kuhn et al. (1999). The

above semi-analytical model has been shown to

yield sufficiently accurate predictions on the elastic
micro-strain and micro-stress fields experienced by

woven micro-constituents due to general in-plane

loading (Kuhn et al., 1999).
2.2. Stress induced matrix microcracking model

As mentioned earlier, the subcritical micro-

cracking condition cannot be used to simulate or

investigate microcracking mechanisms associated

with an abrupt microcracking event. In order to

expand the model capability to simulate the
above phenomenon, the supercritical microcrack-

ing model is developed herein. As such, the su-

percritical condition model is complementary to
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the subcritical microcracking model first devel-

oped by Charalambides and McMeeking (1987,

1988).

2.2.1. The supercritical microcracking continuum

The microcracking continuum model founded
on the work of Fu and Evans (1985) employed

herein, was developed by Charalambides and

McMeeking (1987, 1988). The key idea of the

model is that an effective stress measure such as

that used by Charalambides and McMeeking

(1987) can be used to update the microcrack den-

sity �, as defined by Budiansky and O�Connell
(1976), at every point in the solution domain. It is
important to note that the microcracking model

employed herein is used as a simple but effective

tool to account for the material stiffness degrada-

tion due to microcracking damage at a point as a

function of the associated stress state.

As will become evident later on, the study fo-

cuses primarily on assessing the damage-induced

non-linear response of a woven CMC system and
as such it employs a rather simple but effective

stiffness degradation law for the microcracking

continuum. At the same time, it is important to

note that more sophisticated microcracking mod-

els such as those developed by Horii and Nemat-

Nasser (1983a,b), Hoenig (1979, 1982), Hashin

(1990, 1991, 1995), Ortiz and Giannakopoulos

(1989), Giannakopoulos (1989, 1990), Krajcinovic
and Fonseka (1981), Krajcinovic (1985), Hoagland

et al. (1976), Hoagland and Embury (1980), and

Voyiadjis (1995a,b) could also be implemented at

later stages as needed to more realistically capture

the damage-induced non-linear response of woven

CMCs. The implementation of such models would

be needed if, for example, microcrack surface

closure effects, microcrack proximity effects, and
pointwise microcrack induced elastic anisotropies

were to be accounted. In light of the above,

the proposed supercritical matrix microcracking

model should be employed in instances wherein

surface crack closure, local microcrack induced

anisotropies, and even local microcrack dilatation

effects as discussed by Charalambides and

McMeeking (1987, 1988) are of secondary impor-
tance, when compared to the effects of material

property degradation.
The implementation of the microcracking

model and parametric studies presented in this

work are performed through the independent

model parameters such as the microcracking rate

constant k, the first microcracking critical stress rc,

the saturation microcracking stress rm and satu-
ration microcracking density �s.

The microcracking model is represented by a

microcracking law which relates the current state

of stress to the current state of microcracking

damage. As discussed earlier, microcracking can

occur, generally speaking, in two different ways.

Under the ‘‘subcritical’’ condition, the material is

damaged gradually before it is saturated. This
condition, which was addressed in the work by

Kuhn et al. (2000), is enforced by employing the

microcracking law shown in Fig. 2a. It is impor-

tant to note that under the subcritical micro-

cracking condition, the material at a point of

interest experiencing an equivalent stress between

the first critical stress rc and the saturation stress

rm is assigned microcrack densities on the rising
branch of the microcracking law. Thus, damage

saturation at a point is only allowed when the

equivalent stress re exceeds the saturation micro-

cracking stress rm. Under this condition, the local

stress–strain curve exhibits a smooth transition

branch from the point of microcracking initiation

to the saturation point as shown in Fig. 2b. Unlike

the subcritical condition, the supercritical micro-
cracking requires that once microcracking initiates

at a point, the damage progresses instantly to its

maximum saturation level �s consistent with the

microcracking law shown in Fig. 2c. As a result,

the associated stress–strain curve exhibits a dis-

continuous jump upon supercritical microcracking

as shown in Fig. 2d.

Thus, in accordance with Fig. 2c, the discrete
microcrack density � under the supercritical con-

dition is obtained in a form of step function as

follows:

� ¼ 0 for re < rc

�s for re P rc

�
ð1Þ

where � is the microcrack density as defined by

Budiansky and O�Connell (1976), and re ¼
ffiffiffiffiffiffiffiffiffiffi
rijrij

p
is an equivalent stress. The parameter rc represents

the equivalent stress at which microcracking initi-



� �
Fig. 2. (a) Subcritical microcracking law relating the microcrack density � to the equivalent stress reð¼

ffiffiffiffiffiffiffiffiffiffi
rijrij

p Þ. (b) The profile of the
non-linear stress–strain curve of an isotropic microcracking continuum under subcritical condition. (c) The supercritical microcracking

law. (d) The profile of the non-linear stress–strain curve of an isotropic microcracking continuum under supercritical condition.
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ates. The saturation microcrack density is denoted

by �s. Unlike the subcritical case presented in Fig.
2a showing the linearly increasing microcrack

density, the microcrack density � under the su-

percritical condition can be either 0 or equal to the

saturation value �s. As discussed before, once the

equivalent stress at the point of interest exceeds rc,

the material at that point is damaged to its satu-

ration microcrack density. Note that rc is equal to

the saturation microcracking stress rm in the su-
percritical case. Charalambides and McMeeking

(1988) approximated the Budiansky and O�Con-
nell (1976) expressions for the effective elastic

properties of a microcracking solid as follows:

E
E
¼ �mm

m
¼ 1� 16

9
� ¼ 1

f
ð2Þ

where E and �mm are the effective Young�s modulus

and Poisson�s ratio of the microcracked solid, re-

spectively and E and m represent the properties of

the undamaged solid. The microcracking parame-
ter f is defined as an internal state variable for

convenience. Consistent with Eq. (2), the stress–

strain relationships for the microcracking solid

take the form:
rab ¼
E

f þ m�
eab þ

m�

f � m�
eccdab

a; b; c ¼ 1; 2 ð3Þ

where m� ¼ m for plane stress and m� ¼ m=ð1� mÞ for
plane strain. In the above expression, repeated

indices in a product imply summation over the
index from 1 to 2. Also in Eq. (3), dab is the

Kronecker delta in two-dimensions which takes

the value of 1 when a ¼ b or 0 when a 6¼ b.
A schematic drawing of a uniaxial stress–strain

curve that obeys Eq. (3) is shown in Fig. 2d. As

shown, the material loads linearly without a loss of

stiffness at all points wherein the effective stress re

is less than rc. Once exceeded, the microcrack
density � increases abruptly to �s, consistent with
the microcracking law given in Eq. (1) and shown

in Fig. 2c. Thus, upon the initiation of micro-

cracking, � becomes equal to �s which leads to

material stiffness degradation consistent with Eq.

(2). Thus, the horizontal branch of the stress–

strain curve, shown in Fig. 2d, is clearly associated

with the material loss of stiffness right at the mo-
ment when the effective stress at the point of in-

terest re reaches or exceeds the critical stress rc of
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Fig. 3. (a) The x–y grid of Gauss integration stations used in the calculation of the volume integrals of the Rayleigh–Ritz method

developed by Kuhn et al. (1999). (b) Integration in the out-of-plane z-direction is carried out using a user-controlled nz number of

Gauss points within each layer as shown above.
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the microcracking continuum. Under both sub-
critical and supercritical microcracking conditions,

upon unloading, the system unloads linearly along

a path dictated by the degraded stiffnesses to zero

stress for zero strain. Clearly, the adopted stress–

strain law does not account for residual strains.

For a given state of strain at a point in the

microcracking material under monotonically in-

creasing loading, the microcrack density � can be
either 0 or the saturation microcrack density �s.
Hence, f can have only two different values as

shown below.

f ¼ 1 for � ¼ 0

1� 16
9
�s

� ��1
for � ¼ �s

�
ð4Þ
As the material is subjected to an arbitrary loading
sequence, the microcrack density � and damage

parameter f may not decrease even as the material

is unloaded. In the present case, the properties E
and m represent the inter-bundle and bundle matrix

properties Em and mm, respectively. Consequently,
the degraded effective microcracked matrix prop-

erties are thus denoted as Em and �mmm.
2.3. Non-linear response

In order to obtain the relationship between the

applied strain êe1 and the resulting macroscopic

stress r̂r1, a strain controlled secant incremental
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and iterative scheme is employed. Initially the

woven unit-cell is assumed to be unloaded with no

residual stresses. In accordance with this assump-

tion, the unit-cell is loaded incrementally by ap-

plying a remote strain êe1. At load increment i, a
remote strain of êe1i ¼ êe1i�1 þ Dêe1i with êe10 ¼ 0 is
applied to the unit-cell. The reciprocal remote

stress briri
1 is then computed with the aid of an it-

erative procedure. The first iteration (j ¼ 1), is

carried out using the degraded matrix properties

obtained from the load step i� 1. This invariably

leads to an overestimated stress ð briri
1Þj¼1

. The new

stress ð briri
1Þj and associated micro-stress fields are

then used to update the microcracking parameter
f j
i at all integration points of the unit-cell. It is

important to note that under the supercritical

condition, the internal microcracking state vari-

able f j
i can assume values of 1.0 or the saturation

level fs, depending on the state of stresses at the

point. The next iteration (j ¼ 2) is then carried out

using the degraded matrix properties obtained

from the previous iteration. A loading step is fin-
ished only when consistent values for the internal

state variable f are obtained for two consecutive

iterations. The converged solution is then stored in

association with the applied strain e1i and stress

r1
i . The new strain increment is then applied as

needed to incrementally impose the specific mag-

nitude of remote loading on the problem. At the

end of the loading procedure, a library of damage
data and effective properties associated with a

specific level of remote load is obtained. This en-

ables the study of both the progression of matrix

micro-damage and the degradation of the unit-cell

effective properties as a function of the applied

load. More detailed presentation on this iterative

scheme can be found in the work by Kuhn et al.

(2000).
In the model implementation, the Gauss inte-

gration scheme is employed to compute the stiff-

ness terms of the semi-analytical approximate

model employed in obtaining the related micro-

fields. Eight isoparametric domain elements as

shown in Fig. 3a are introduced as needed to

compute the high stress gradients in the vicinity of

the pre-existing void as discussed elsewhere (Kuhn
et al., 1999). Within each domain element, a user-

controlled M � N Gauss integration stations are
used consistent with the convergence studies of the

semi-analytical approximate model reported by

Kuhn et al. (1999). A user-controlled nz Gauss

integration stations are also introduced in the

thickness z-direction as shown in Fig. 3b. As a

result, a total of 8�M � N � nz number of Gauss
integration points are used to evaluate the stiffness

terms of the semi-analytical approximate model

and to update the state of damage.
3. Microcracking simulations

The simulations were carried out in a non-di-
mensional environment. The spatial variables are

normalized by a characteristic length Lc which in

this study is set to be equal to the unit-cell half

period a. The shear and Young�s moduli of each

micro-constituent, mesoscopic phase, and the ef-

fective unit-cell are normalized by a characteristic

modulus Ec which is chosen to be the Young�s
modulus of inter-bundle matrix Em. All stress
components are normalized by a characteristic

stress Rc which is chosen to be the matrix micro-

cracking initiation stress rc.

The normalized material and geometry para-

meters for a representative chemical vapor infil-

trated (CVI) ceramic matrix plain weave fabric

composite considered for this study, are listed in

Table 1a. In the above table, the hat (^) notation is
used to denote the normalized non-dimensional

value. The mesoscopic effective tow elastic prop-

erties computed by the hierarchical approach

presented in the work by Kuhn and Charalam-

bides (1998a) are listed in Table 1b. The effective

inter-bundle matrix properties are also listed in

Table 1b. The unit-cell volume fractions occupied

by the mesoscopic phases computed from the
surface functions of the matrix layer geometry

model are listed in the third column of Table 1b.

Effective elastic properties of the undamaged unit-

cell were obtained from the semi-analytical ap-

proximate model presented in the work by Kuhn

et al. (1999) and are listed in the last column of

Table 1b.

The non-linear stress–strain curves of the sys-
tem under consideration for different values of the

saturation microcrack density �s are presented in



Table 1

Micro-structural, mesoscopic, and unit-cell properties characteristic of a CVI ceramic matrix plain weave fabric composite

Fiber Fiber coating Matrix Bundle coating Volume fractions Geometry

(a) Microstructural input parametersbEEf ¼ 0:5 bEEfc ¼ 0:125 bEEm ¼ 1:0 bEEbc ¼ 0:25 Cf ¼ 0:5 âa ¼ 1:0

mf ¼ 0:2 mfc ¼ 0:25 mm ¼ 0:3 mbc ¼ 0:25 Cfc ¼ 0:05 b̂b ¼ 0:1

Cbm ¼ 0:1 ĝg ¼ 0:15

Cbp ¼ 0:15 ĥh ¼ 0:2

Cbc ¼ 0:20 l̂l ¼ 1:0

Cm ¼ 1:0 t̂t ¼ 0:03

Cmp ¼ 0:0

(b) Meso- and macro-scopic output

Effective tow Effective matrix Overall volume

fractions

Undamage unit-cell

bEE11 ¼ 0:346 bEE �mm ¼ 1:0 Vfill ¼ 0:272 bEEx ¼ 0:413bEE‘
22 ¼ 0:285 bGG �mm ¼ 0:385 Vwarp ¼ 0:272 bEEy ¼ 0:413bGG12 ¼ 0:119 m �mm ¼ 0:3 Vmatrix ¼ 0:251 mxy ¼ 0:261bGG‘
23 ¼ 0:115 Vvoid ¼ 0:204 myx ¼ 0:261

m12 ¼ 0:219 bGGxy ¼ 0:159

m‘23 ¼ 0:234

The listed properties were obtained using the hierarchical micro-mechanics model developed by Kuhn and Charalambides (1998a,b).
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Fig. 4. In each plot, the normalized unit-cell stress
r̂r1 is plotted against the normalized unit-cell

strain êe1 for the indicated saturation microcrack

density �s with krc ¼ 1:0e+4. Note that the su-

percritical microcracking law requires that the

microcracking rate k is equal to infinity. In these

simulations, a sufficiently large value equal to

1:0e+4, was used for the microcracking rate.
Fig. 4. Simulated non-linear stress–strain curves of the unit-cell

with microstructure parameters listed in Table 1 for different

values of �s and krc ¼ 1:0e+4.
For each non-linear curve, a total of 100 strain
increments were applied to achieve the final re-

motely applied unit-cell strain of êe1 ¼ 2:0. The

reported curves were obtained using a 30� 30

grid of integration stations within each domain

element while also using a total of 3 integration

stations within each mesoscopic phase in the z-
direction. Initially the strain was increased by

Dêe1 ¼ 0:2 from zero aiming at reducing un-
necessary computations in the linear region

without affecting the results. Subsequently, the

remaining strain was applied in increments of

Dêe1 ¼ ð2:0� 0:2Þ=99. The damage initiation oc-

curred at the same point where êe1 ¼ 0:29 and

r̂r1 ¼ 0:13 for every saturation microcrack density

�s. Note that the damage initiation under sub-

critical conditions also occurred at êe1 ¼ 0:29 and
r̂r1 ¼ 0:13 as reported in the work by Kuhn et al.

(2000). On the other hand, Aubard et al. (1994)

reported that the matrix cracking was observed to

initiate approximately at êe1 ¼ 0:3 and r̂r1 ¼ 0:2,
respectively. These values are of the same order as

those predicted by the model. The difference in

stress is likely due to the slight difference between

the two systems, which is addressed by Kuhn et al.
(2000).



Fig. 5. Experimented stress–strain curves obtained by Williams

International and CCI Inc. (Patterson, 1999) using a DuPont

Lanxide SiC/SiC plain weave composite, are compared to su-

percritical microcracking stress–strain curves obtained for three

different saturation densities, i.e. �s ¼ 0:3, 0.4 and 0.5 and

krc ¼ 1:0e+4.
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3.1. Non-linear stress–strain curves

Some level of non-linear response is apparent in

each of the plots presented in Fig. 4. For �s ¼ 0:1,
there is a brief non-linear response, followed by a
clear resumption of linearity, as also observed in

the curves for �s ¼ 0:2 and �s ¼ 0:3. The sequence

of linear, non-linear and again, linear response

indicates that at these relatively low values of

saturation microcrack density level, the micro-

crack density at every point in the woven unit-cell

becomes saturated within the range of applied

strain. It is worthwhile to note that this pattern is
consistent with reference (Aubard et al., 1994),

where three loading stages (linear, non-linear, and

linear) were identified by monitoring acoustic

emissions. As a result, the stress–strain curves re-

ported by Aubard et al. (1994) appear to be highly

consistent with the curves simulated herein. At

higher levels of saturation density (�s ¼ 0:4 and

0.5), there is no apparent resumption of linearity
within the selected range of applied strain. Instead,

after the onset of microcracking damage, the

curves are shown to exhibit local irregularities

reminiscent of experimental data behaviors. This

may be a direct consequence of the abrupt and

rather unstable nature of the supercritical micro-

cracking mechanism.

Carefully comparing the curves presented
herein (see Fig. 4) with their subcritical counter-

parts reported by Kuhn et al. (2000), it is observed

that the subcritical curves always exhibit higher

stresses than those of the supercritical counter-

parts at the same level of applied strain. Under the

subcritical microcracking condition, the micro-

crack density grows linearly up to its saturation

level. Thus, even though the material is damaged,
it still can sustain appreciable load until it is fully

damaged. The supercritical microcracking condi-

tion, on the other hand, can only be associated

with two distinct states of damage: undamaged or

fully damaged states. As a result, at the same level

of loading, the supercritical microcracking model

exhibits lower load-carrying capacity than its

subcritical counterpart as discussed above.
Experimental non-linear stress–strain curves are

presented with simulated ones in Fig. 5. The ex-

perimental curves were obtained from tensile tests
of plain weave composites (DuPont Lanxide SiC/

SiC) (Patterson, 1999). As presented in the figure,

the simulated non-linear stress–strain curves are

shown to exhibit a behavior similar to that of the

experimental curves. Note that the CVI ceramic

composite simulated in this study is comprised of
Nicalon fibers and SiC matrix, while the details of

the composite micro-structure were not identified.

The comparison to experiments presented in the

paper is limited to the response of a SiC/SiC sys-

tem. For this system, one can argue that thermal

stresses play little if any role since the matrix and

fiber constituents do not exhibit significant ther-

mal expansion mismatches. It is in light of the
above argument that the comparisons to experi-

ments presented in Fig. 5 are made. The mechan-

ical response of SiC/SiC woven composites is

complex and intricately related to the material and

geometrical complexity of the microstructure. The

characterization of mechanical behavior of such

complex systems requires experimental studies

complemented by robust hierarchical modeling
capable of preserving the integrity of the micro-

structure. The research presented in this paper
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reflects a small step in an integrated effort to de-

velop robust hierarchical models needed for the

characterization of such complex systems. In that

light, model predictions are compared to existing

experiments as a means of establishing an overall

envelope of material behavior and model predic-
tion capabilities. The model comparison to ex-

periments presented in Fig. 5 may suggest that the

global non-linear composite response may, to a

large extent, be attributed to the presence of non-

linear matrix dominating damage processes cap-

tured by the super-critical micro-mechanics model

put forth herein. However, the reader should re-

main critical on whether the current model fully
captures the totality of non-linear processes that

may concurrently activate during loading in such

complex systems. Conclusive answers to the above

question should be the outcome of further funda-

mental studies that bring together the certainty of

experiments and the broadness of phenomeno-

logical modeling. As such, the research presented

in this article does not reflect the end, but rather, it
should signify the beginning of a broad modeling

effort that ultimately is needed in helping the

community of researchers and field engineers un-

derstand and thus make better use of this prom-

ising new class of material systems.

3.2. Effective property degradation

In Fig. 6, the non-linear stress–strain curves are

plotted along with the respective effective elastic

properties of the damaged unit-cell, for five dif-

ferent saturation microcrack densities. The effec-

tive properties presented in Fig. 6 represent the

linear response of the damaged unit-cell at each

level of loading. The methodology employed to

calculate the effective properties of the unit-cell is
presented in great detail in the work by Kuhn and

Charalambides (1998a).

As shown in Fig. 6, in all cases presented, the

properties remain constant up to the elastic limit at

which the effective elastic properties start degrad-

ing. The property degradation becomes more

pronounced with the higher microcrack density

saturation level �s in accordance with the fact that
the higher levels of �s represent the higher con-

centration of microcracks and thus lower load-
bearing capacity at the associated damaged points.

In systems with low microcracking capacity, in

other words, low levels of �s, the in-plane effective

elastic moduli bEEx and bEEy are shown to experience a

brief differential degradation in the interval of �̂�1

equal to 0.7–1.35. In the above loading regime, the
in-plane modulus bEEx is shown to degrade more

than the transverse modulus bEEy . As a result of the

locally isotropic microcracking law used in these

simulations, for the cases of �s ¼ 0:1, 0.2, macro-

scopic damage-induced orthotropies persists only

for a brief loading period which depends on �s as
shown in Fig. 6. However, the results obtained for

higher saturation densities indicate that, during
loading, the evolution of microcracking degrades

the effective modulus in the direction of loading at

significantly higher rate compared to its orthogo-

nal counterpart as shown in the plots for �s ¼ 0:4
and �s ¼ 0:5. Consistent with the stress–strain

curves for �s ¼ 0:4 and �s ¼ 0:5 showing locally

irregular behavior, the effective properties for the

same cases exhibit similar tendencies (see Fig. 6).
When compared to the subcritical case results

presented in the work by Kuhn et al. (2000), the

supercritical results are observed to exhibit a

moderately higher effective property degradation

rate at the same load level. This confirms the rel-

atively lower load-bearing capacity of a super-

critical microcracking material (compared to its

subcritical counterpart).

3.3. Volumetric matrix damage estimation

In this section, we report on the evolution of

matrix damage-induced by the applied loads by

monitoring the total volume of damaged matrix as

a function of the applied strain. These results are

presented in Fig. 7. As shown in the above figure,
V d
im denotes the volume of damaged inter-bundle

matrix, whereas V d
fm and V d

wm denote the volume of

damaged matrix material within the fill and warp

tows, respectively. Thus, the total volume of

damaged matrix material is V d
m ¼ V d

im þ V d
fm þ V d

wm.

After upgrading the damage at each loading step,

the damaged matrix volume is computed through

a numerical volume integration of the data col-
lected at each integration point of the three-

dimensional integration grid (see Fig. 3).



Fig. 6. Non-linear response and effective properties of the damaged unit-cell versus remote strain for krc ¼ 1:0e+4.

S.I. Haan et al. / Mechanics of Materials 35 (2003) 1107–1126 1117
Normalized volumetric matrix damages are

presented in Fig. 7 as a function of the applied

loading. Each plot contains five curves associated

with five different saturation densities �s. In Fig.

7a, all curves intersect the remotely applied nor-

malized strain axis êe1 at the same point, repre-

senting the critical strain at which the matrix

microcracking initiates in the inter-bundle matrix
phase. On the other hand, in Fig. 7b and c, the

matrix damage initiations of the fill and warp

tows are shown to be different for each saturation
density level. In both phases, the matrix micro-

cracking initiates earlier in the system with higher

microcracking density saturation level. Closer ob-

servation of the above results reveals that in an

overall sense, matrix microcracking first initiates in

the inter-bundle matrix phase. The critical matrix

damage initiation strain ð�̂�1x Þc in each phase for

five different saturation levels are listed in Table 2.
As shown, the matrix damage initiation of the

inter-bundle matrix phase is independent of the

saturation level �s, while those of the bundle



Table 2

The matrix damage initiation loads ðêe1x Þc in each mesoscopic phase for five different saturation levels

Phase ð�̂�1x Þc
�s ¼ 0:1 �s ¼ 0:2 �s ¼ 0:3 �s ¼ 0:4 �s ¼ 0:5

Inter-bundle matrices 0.2909 0.2909 0.2909 0.2909 0.2909

Warp tows 0.5818 0.5454 0.4727 0.4363 0.3636

Fill tows 0.7272 0.7272 0.7272 0.6545 0.5818

(a) (b)

(c) (d)

Fig. 7. The volume fraction of damaged matrix versus remote strain calculated for (a) the intertow matrix, (b) the warp tows, (c) the fill

tows, and (d) the entire unit-cell. The reported results were obtained for five saturation microcrack density levels.
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matrices are clearly dependent on �s. In addition to
the above, the results reported in Fig. 7 suggest

that the damage spreads faster in systems charac-
terized by the lower saturation microcracking
densities. This is evident in all plots in Fig. 7,

where both the inter-bundle matrix and bundle
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matrix are shown to be fully damaged for systems

with the relatively lower saturation levels (�s ¼ 0:1,
0.2, 0.3) while, other systems with the higher sat-

uration levels (�s ¼ 0:4, 0.5) remain only partially

damaged. This observation makes intuitive sense,

since systems with the higher saturation level �s
lose more load-bearing capacity consistent with

the higher effective property degradation rate in

the vicinity of the existing damaged zone.

In Fig. 8, the in-plane effective elastic properties

reported in Fig. 6 are plotted against the normal-

ized volumetric matrix damage V d
m=Vtotal for the
Fig. 8. Effective property degradation rate plotted against the overal
entire system. As expected, each property degrades

with increasing volumetric matrix damage V d
m=

Vtotal. The results reported in Figs. 7 and 8 make

possible, for the first time, the development of

empirical matrix damage-induced degradation

laws for the effective moduli of a microcracking
woven unit-cell. As the first step of developing the

empirical laws mentioned above, it is found that

all the curves reported in Fig. 7d can be approxi-

mated by using the following empirical formula:
V d
m

Vtotal
¼ 0:154½erfðAðêe1x � BÞ þ CÞ� ð5Þ
l volume fraction of damaged matrix for different values of �s.



Fig. 9. Elastic property degradation profiles obtained for �s ¼ 0:3. The solid lines represent the empirical law (see Eqs. (7)–(11))

predictions while the open symbols represent numerical predictions obtained using the supercritical microcracking model.
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where

erfðxÞ ¼ 2ffiffi
p

p
R x
0
e�t2 dt

A ¼ �4:74�s þ 3:3

B ¼ �2:62ð�s � 0:32Þ2 þ 1:15

C ¼ ðe1��6:9s Þ49:2

8>>>><>>>>: ð6Þ

The function erfðxÞ appearing in Eqs. (5) and (6)
above is known as the error function, which is

commonly used in the field of Statistics. Each of
the in-plane moduli follows a universal degrada-

tion law for all the saturation density levels as

follows:

bEEx ¼ bEE0
x 1

"
� 3:3�1:03s

V d
m

Vtotal

� �2:0�1:55�0:17s

#
ð7Þ

bEEy ¼ bEE0
y 1

"
� 8:8�1:33s

V d
m

Vtotal

� �2:0�0:75�0:03s

#
ð8Þ



Fig. 10. Fringes of the microcrack density � after damage initiation, corresponding to loading point a. The remote uniaxial strain

loading is applied in the x-direction.
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m̂mxy ¼ m̂m0xy 1

"
� 2:0�0:59s

V d
m

Vtotal

� �2:0�1:8�0:3s

#
ð9Þ

m̂myx ¼ m̂m0yx 1

"
� 2:5�0:44s

V d
m

Vtotal

� �2:0�1:35�0:47s

#
ð10Þ

bGGxy ¼ bGG0
xy 1

"
� 4:0�1:0s

V d
m

Vtotal

� �2:0�1:5�0:27s

#
ð11Þ

Thus, when combining Eq. (5) and Eqs. (7)–

(11), the in-plane effective moduli can be expressed

in terms of the remotely applied strain êe1. The in-
plane moduli predicted using the above empirical
laws for the case of �s ¼ 0:3 are presented in Fig. 9

along with their numerical counterparts. As

shown, the empirical formulas capture the de-

graded effective in-plane properties with great deal

of accuracy. It is expected that the empirical mo-

duli degradation formulas presented in this work

will lay the foundation for the development of

sound and sensible phenomenological continuum
models capable of accurately modeling the dam-

age-induced non-linear response of woven CMCs.

As such, complementary studies are now being

conducted aiming at establishing the requisite

moduli degradation laws governing woven CMCs

subjected to a general in-plane loading.
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3.4. Damage zones

While the resulting effects of damage evolution

such as the non-linear response of the system, the

degradation of the in-plane effective properties,
and the evolution of the volumetric matrix damage

were extensively addressed above, there also exists

the need to visualize the formation and evolution

of microcracking damage within the unit-cell with

increasing applied strains. Three layered 2-D me-

shes coinciding with the Gauss integration stations

where the matrix microcrack densities are actually

evaluated, are introduced at each mesoscopic
phase for the purpose of displaying fringes of the

matrix microcrack density. The unit-cell fringes at

four points carefully selected along the stress–
Fig. 11. Fringes of the microcrack density � after the knee behavior,

direction.
strain curve for �s ¼ 0:5 and krc ¼ 1:0e+4 are

shown in Figs. 10–13.

The above sequence of microcrack density

fringes offers a great insight on the progression of

damage in the matrix material of the unit-cell. For

example, the damage zones shown in Fig. 10 were
obtained at a loading state marked by point a on

the stress–strain curve displayed on the top of the

figure. At this point, the inter-bundle matrix ma-

terial has sustained a limited amount of damage,

while also showing that damage has, at the same

time, initiated in the matrix material in the warp

tows. No damage is shown in the fill tows at this

loading stage.
At the point immediately following the ‘‘knee’’

region of the stress–strain curve (point b), the
corresponding to loading point b. The x-direction is the loading
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fringes presented in Fig. 11 illustrate that the inter-

bundle matrix damage has propagated outward in

the direction perpendicular to the applied loading,

forming a narrow damage band across the woven

unit-cell which resembles a mode-I matrix crack.

At this stage of loading, there is evidence of
damage progression in the matrix material of the

warp tows as well as the fill tows. It is quite ob-

vious that the damage in the warp tows and the fill

tows can be associated with cracking phenomena

such as bundle matrix cracking and transverse

bundle matrix cracking, respectively.

In Fig. 12 corresponding to point c of the

stress–strain curve, the narrow damaged band in
the inter-bundle observed in Fig. 11 has become

broader. As a result, the matrix material sustains
Fig. 12. Fringes of the microcrack density �, associated with loading

rection.
significantly reduced load and most of the load is

transferred through the fiber reinforcements and

the warp tows. This simulates the evolution of a

well-formed matrix crack in the fill tows bridged

by the tow fiber reinforcements.

The damage zones of Fig. 13 show that the
matrix material in the warp and fill tows has sus-

tained appreciable damage at this stage of loading

(point d). As shown, only a small portion of the

unit-cell domain remains damage-free. It is possi-

ble that other micro-failure events such as bundle

delamination, fiber failure and pull-out, which are

not accounted for in this study, may in fact be

active at this level of loading.
While recognizing the limitation of this model,

the damage zones reported in Figs. 10–13 do yield
point c, induced by uni-directional remote loading in the x-di-



Fig. 13. Fringes of the microcrack density �, associated with loading point d, due to loading in the x-direction.
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appreciable insights regarding the evolution of

supercritical damage zones in woven CMCs. For

example, the above results demonstrate that ma-
trix damage should be expected to evolve in di-

rections perpendicular to the direction of applied

loading. While the inter-bundle matrix phase ap-

pears to be the most susceptible to microcracking

damage, the bundle matrix in the warp tows which

are aligned with the direction of loading in this

study, also experience localized mode-I cracking

similar to that predicted for the inter-bundle ma-
trix phase. On the other hand, the fill tows which

are in the direction perpendicular to the applied

loading exhibit damage characteristics consistent

with transverse matrix cracking parallel to the fi-

ber reinforcements.
4. Conclusions

This work represents a continuous effort to

model the non-linear response of ceramic matrix

plain weave composites. The supercritical matrix

microcracking model capable of accounting for the

abrupt loss of material stiffness due to micro-

cracking, developed in this study was used to

simulate the damage-induced non-linear response

of ceramic matrix woven systems.
Analytical and hierarchical micro-mechanics

models capable of capturing the intricate three-

dimensional micro-stress fields due to a general

in-plane loading were embedded within the non-

linear iterative scheme used to update the load

induced micro-damage. A wide range of non-linear
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stress–strain curves under remote tension were

obtained. The irregularities of the curves are at-

tributed to the abrupt loss of material stiffness

under the adopted supercritical microcracking

condition. Matrix cracking initiation was found to

be independent of the saturation microcracking
density �s. It was shown that matrix microcracking

first initiates in the inter-bundle matrix in the high

stress concentration region around the large ma-

trix void. The model predictions were found to be

in good agreement with experimentally obtained

stress–strain curves.

Extensive parametric study results were used to

develop empirical strain-induced damage accu-
mulation and moduli degradation laws. The latter

findings can assist the development of sensible

phenomenological continuum models capable of

modeling the damage evolution and non-linear

response of ceramic matrix woven composites.
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