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Abstract 
This is the first part of two manuscripts that address the 

development of scientifically based methodologies that use 
finite element methods and optimization algorithms to design 
optimal fixturing layouts for the drilling process. Part I focuses 
on the problem formulation and Part II discusses the results. 
The fixturing problem formulation is posed as a constrained 
optimization problem, in which the physical fixture constraints 
define the domain, and the desired fixturing characteristics 
are optimized in accordance with a selected objective func- 
tion. The optimal fixturing model developed includes a mater- 
ial removal strategy that enables one to calculate the shape 
and dimensions of the machined hole surface. The boundary 
value problem associated with the optimal fixturing simula- 
tions is first formulated. Five different objective functions 
capable of describing various geometrical aspects of the 
machined hole have been developed and tested. These func- 
tions evaluate the square differences between the simulated 
and nominal radii and diameter values, minimize the maxi- 
mum values of the latter quantities, and minimize the devia- 
tions of the drilled surface from a perfect cylinder. 

Keywords: Optimal, Fixture, Deformable, Workpiece, 
Drilling, Design, Objective Function, Finite Elements 

1. Introduction 
Approximately 40% of rejected parts are due to 

dimensioning errors that are attributed to poor fix- 
turing design.’ Fixtures are used to accurately posi- 
tion and adequately constrain a workpiece in the 
machine-tool coordinate system. Adequate con- 
straints of a deformable workpiece ensure that the 
dimensions and shape of the machined surfaces are 
within the required tolerances. Research efforts that 
address the development of scientifically based fix- 
ture design methodologies are reported in Refs. 2 
through 10. Mathematical tools that are based on 
computer-aided design (CAD) and finite element 
(FE) analysis have been instrumental in advancing 
state-of-the-art fixture design methodologies. 

This paper is structured as a two-part manuscript 

in which the model formulation is discussed in Part I 
and the results in Part II. (Part II follows in this 
issue.) Part I further develops the scientific tools that 
capture the shape and dimensional characteristics of 
the machined surfaces generated through drilling 
operations. These tools are based on FE analysis, 
optimization, and schemes that handle material 
removal strategies. In formulating the fixturing opti- 
mization problem, Part I presents five different 
objective fimctions that result in different fixture lay- 
outs. These layouts are tested and evaluated in Part 
II. A literature review that highlights the contribu- 
tions of previous researchers follows. 

Shirinzadeh2 introduced reconfigurable fixture 
modules that are assembled by robotic manipulators 
and based on a CAD model of the workpiece. 
Automatically reconfigurable fixture designs are 
also addressed by earlier reports of Asada and By3 
and Chou et a1.4; however, these concepts have been 
limited to laboratory applications. Automatic fixtur- 
ing design5 retains resting equilibrium and static sta- 
bility of the workpiece. Resting equilibrium condi- 
tions are essential for stabilizing the workpiece 
when it is initially placed on the fixture locators, and 
static stability must be maintained when the clamp- 
ing and machining forces are applied. A resting 
equilibrium is obtained when the wrench formed by 
the reacting locator-forces falls within the triangle 
formed by the three supporting locators; static sta- 
bility is obtained if the matrix formed by the static 
equilibrium equations is fully ranked. 

Brost and Goldberg6 formulated optimal fixturing 
designs that minimize the reaction forces at the loca- 
tors. In this formulation, the workpiece is modeled 
as a rigid body and the deformations induced by the 
clamping and machining forces are not considered. 
Zhang et al.’ compared the optimal fixturing designs 
obtained through rigid body analysis to fixtures cal- 
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culated by elastically deformable workpiece models. 
Their findings demonstrate that the two formula- 
tions result in substantially different optimal fixtur- 
ing layouts. 

Lee and Haynes8 and Menassa and DeVries’ 
employed FE models to, respectively, obtain fixtures 
that minimize the work done by the clamping and 
machining forces and minimize the displacements 
of selected nodes of the FE mesh. Pang” introduced 
frictional contact elements to the FE models and 
incorporated formulations that minimize the dis- 
placements of selected FE nodes as well. 

De Meter” applied optimization techniques to 
fixturing design based on contact region loading, 
where the workpiece is treated as a rigid body. Here, 
the selected objective function is the summation of 
the magnitudes of the loads in the contact regions. 
Melkote,12 on the other hand, used genetic optimiza- 
tion algorithms to determine the layout of fixtures in 
which the deformation of the machined surface due 
to clamping and machining forces is minimized over 
the entire tool path. 

Liao, Hu, and Stephenson13 optimized fixture lay- 
outs by minimizing workpiece deflections due to 
clamping forces; nevertheless, the effects of machin- 
ing forces are not accounted for. In this model, the 
deformations of the workpiece and locators are 
accounted for, and the interface between the locator 
and the workpiece is modeled as a surface contact 
pair. 3-2-l fixturing scenarios are considered, and 
FEA is used to solve the deformation field. The 
deformations of selected nodes constitute the objec- 
tive function. In addressing fixturing problems of 
deformable sheet metal that is neither prismatic nor 
solid, an N-2-l fixture design has been proposed by 
Cai, Hu, and Yuan.14 They report algorithms for find- 
ing the best N locating points such that total defor- 
mation of a sheet metal is minimized. These algo- 
rithms are based on the N-2-l fixturing scenarios. 
Here, FEA models and nonlinear programming are 
utilized to obtain the optimal fixture layout. 

Sayeed and De Meter” introduced a Mixed 
Integer Programming (MIP) model for determining 
the optimal locations of locator buttons and their 
opposing clamps for minimizing the effect of static 
workpiece deformations on machined feature geo- 
metric error. This model utilizes finite element 
analysis of the workpiece, yet its solution is size sen- 
sitive to the square of the number of machining 
response points considered. A technique that makes 

the MIP model size strictly proportional to the num- 
ber of machining response points and alleviates this 
severe limitation is reported in Sayeed and De 
Meter.16 Another fixture optimization algorithm was 
suggested by De Meter,” who presented Fast 
Support Layout Optimization (FSLO) models. 
FSLO determines support locations that minimize 
the maximum displacement-to-tolerance ratio of a 
set of workpiece features subject to machining 
loads. This work is highly relevant to the work pre- 
sented in this manuscript. 

The focus of the current research project is to 
develop scientific methods that capture the shape 
and geometry of machined surfaces generated 
through drilling operations and to design fixtures 
that maintain dimensional errors within allowable 
tolerances. Part I is organized as follows: the finite 
element formulation of the surface geometry gener- 
ated through the drilling process is presented, and 
automatic mesh generation procedures are dis- 
cussed. This is followed by a derivation of the opti- 
mal fixturing problem for which five different objec- 
tive functions are suggested. Then, conclusions are 
reached. 

2. Finite Element Modeling 
In this study, the method of finite elements is 

employed for the purpose of calculating the work- 
piece deformations induced by the drilling loads. It 
is understood that the actual drilling process may be 
governed by nonlinear interactions between the pen- 
etrating drill and the deforming workpiece. For 
example, the removal of material during drilling 
alters the geometry and thus the structural stiffness 
of the workpiece, which in turn leads to higher 
deformations, both in the near-drill proximity as 
well as in remote regions of the workpiece. In addi- 
tion to the local and global effects of material 
removal, nonlinear damage evolution in the near- 
drill proximity is also expected to augment the local 
deformation field, which determines the quality of 
the drilling process. This may include several types 
of damage such as microcracking in ceramics, 
delamination in composite laminates, plasticity in 
metals, fiber debonding and pull-out in fiber rein- 
forced composites, and other potential forms of 
damage. To account for all of the above, a robust 
nonlinear finite element model needs to be devel- 
oped. Such a nonlinear and computationally inten- 
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Figure 1 
Fixturing Layout o f  a P r i s m a t i c  W o r k p i e c e .  Lt ,  L2, a n d  L3 are the ver- 
tical l oca to r s ;  L4, Ls, a n d  L6 are lateral l oca to r s ;  C~ is a vertical clamp 

and C2 and (73 are lateral c l a m p s .  

sive model will then need to be embedded within an 
iterative optimization scheme• This optimization 
scheme is designed to assess the quality of the 
drilling process with built-in capabilities of identify- 
ing optimal restraining fixture configurations• While 
such a far-reaching modeling objective is now being 
considered, in this study we adopt a rather simplis- 
tic approach in simulating the drilling process using 
the method of finite elements. The boundary value 
problem and the assumptions used in the develop- 
ment of the finite element model in this study are 
presented next. 

The study is conducted with the aid of the plate 
workpiece geometry shown in Figure 1. The plate 
has a length Lx, width Ly, and height h. The sub- 
scripts x, y, and z are used to indicate the plate align- 
ment with respect to the global system of reference, 
the origin of which is located at the lower left comer 
of the plate. Vertical supports L1(XLI, YL1, 0), L2(XL,, 
YL2, 0), and La(XL3, YL3, 0) are placed at the bottom 
surface of the plate, and lateral restraints labeled as 
L,(0, Y,,, ~ ), Ls(0, YLs, ~ ), and L6(0, YL6, ~ ) are intro- 
duced as needed to effectively restrain the in-plane 
rigid body motion of the workpiece. Clamps denot- 

t 
i 

Figure 2 
1/2 in. a n d  3/4 in.  Holes  a r e  Dr i l l ed  T h r o u g h  a 3 x 4 x i / 4  in. P la te .  
Centers are located at (2.5, 0.5) a n d  0 . 0 ,  3.0) (in.), respectively. 

ed by C1(Xcl, Yc,, h), C2(Lx, Yq, ~ ), and C3(Xc3, Ly, ~ ) 
are introduced to ensure total restraint. This applica- 
tion of the fixturing components is consistent with 
the 3-2-1 fixturing scheme utilized for prismatic 
workpieces (Refs. 2-10). Finally, a concentrated 
thrust force F~ and a line-distributed drilling torque 
M are imposed at the drilling site located at position 
(x0, r0, zo). 

As will be discussed later in this section, a gener- 
al geometry model that is capable of simulating self- 
similar geometry, restraining, and loading configu- 
rations is first developed. However, the simulations 
conducted as part of this study are carried out for 
drilling various combinations of two holes through a 
plate dimensioned as shown in Figure 2. 

For either the general or the specific problem con- 
sidered in this study, the models are developed so 
that the optimization design variables are: the 
Cartesian coordinates of the three vertical locators 
(XLj, YLi), i = 1-3, the Cartesian coordinates of the 
horizontal locators, (YL4, YLs, and XL6), the position 
of the vertical and horizontal clamps (Xq, Yq, Yq, 
and Xc3), and the magnitude of the clamping forces 
(Fcz, Fcx, and Fc~). This list of 16 design opti- 

• 1 . 2 3 .  . . 
mlzatlon parameters is denoted as ~ The parame- 
ters are the dependent variables of the objective 
functions defined in Section 4. 

Geometry Discretization 
A parametric mesh generator that is capable of 

discretizing the geometry shown in Figure 1 has 
been developed. Here, 20-noded brick isoparametric 
elements are used. Geometry parameters such as 
plate length, width, height, hole location and diame- 
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ter, and hole depth and number of holes can be var- 
ied either internally through a user-specific algo- 
rithm or externally through a user-control input file. 
The mesh generator then establishes the spatial posi- 
tioning of the nodes of critical 20-noded isopara- 
metric super-elements, which are subdivided into 
the smaller finite elements based on further user 
input. Special care is given so that the final mesh 
exhibits nodal characteristics needed for the effec- 
tive enforcement of the geometric and loading 
boundary conditions. Typical 3-D meshes generated 
with the aid of the generalized mesh generator for 
plates containing one, two, three, or four holes are 
shown in Figures 3a-3d. 

These meshes contain anywhere between 648 
(Figure 3a) and 936 (Figure 36) 20-noded brick ele- 
ments with about 11,000 to 16,000 degrees of free- 
dom. Elastic solutions obtained using the above 
meshes and the sparse solver option of the 
ABAQUS18 finite element software required approx- 
imately 1 to 2 minutes of cpu time on an SGI 
Challenge RlOOOO series machine. In most cases 
reported here, the optimal solutions required over 
1000 iterations, within which a new elastic solution 
is generated. 

Drilling Process Simulation 
As discussed earlier in this work, the drilling 

process is a highly nonlinear phenomenon governed 
by material, geometric, and contact nonlinearities. 
To accurately simulate such a process, one needs to 
employ an incremental finite element scheme 
embedded in an iterative optimization algorithm. 
Thus, tens or possibly hundreds of thousands of 
finite element incremental solutions are required to 
be completed in conducting optimal drilling simula- 
tions. While such a task may be computationally 
feasible for future studies, in this work it was sought 
to derive useful insights on optimal fixturing by sim- 
ulating drilling as a linear process. 

More specifically, it is assumed that no damage of 
any form develops during drilling. It is assumed that 
the contact between the drill bit and the elastically 
deforming plate gives rise to constant drilling loads, 
which are modeled as a drilling concentrated thrust, 
F,, and a line-distributed drilling torque, A4.19 
Consequently, the material is removed in one step, 
greatly reducing the needed computations. As such, 
the drilling process is simulated by considering a 
preexisting terminal cylindrical hole in the plate of 

Figure 3 
FE Meshes for a Single Hole (a), Two Holes (b), Three Holes (c), and 
Four Holes (d). The above undeformed meshes contain 648,744,840, 

and 936 ZO-noded isoparametric elements, respectively. Total number 
of degrees of freedom for (a), (b), (c), and (d) is 10,899, 12,582, 

14,265, and 15,948, respectively. 
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diameter equal to that of the drill bit. The drilling 
thrust and moment developed at the leading front of 
the drilling process are thus introduced as applied 
loads acting on the bottom surface of the hole, as 
shown schematically in Figure 4. In the simulations 
reported here, a hole depth was selected to be equal 
to (0.9 h) throughout the study. This selection was 
based on solution convergence studies wherein the 
radial displacement component at the rim of the hole 
was monitored as a function of the hole depth. One 
may argue that modeling the drilling process using a 
preexisting hole reduces the overall stiffness of the 
workpiece, which introduces inaccuracies. It is 
important to state that in developing the current one- 
step drilling model, the above issue was considered 
and found to be irrelevant because at the end of the 
drilling process one encounters a weakened work- 
piece that is consistent with the current preexisting 
hole model. 

The effects of the abovementioned drilling loads 
on an elastic workpiece constrained in a manner 
shown in Figure I can be understood with the aid of 
Figures 5a and 5b. In these figures, a top view of the 
entire workpiece as well as a view of a detailed 
region around the hole are shown. It is clear from the 
above deformed configurations that the elastic solu- 
tion predicts physically inadmissible material inter- 
penetration at the drill bit walls. To eliminate such 
physically inadmissible deformations, inverse map- 
ping procedures are developed as needed to calcu- 
late and remove the interpenetrating material vol- 

Li I 

Figure 4 
Detailed Schematic of Drilling Region. The applied thrust F, and torque 

Mare used to simulate the loads associated with the drilling process. 

ume in the hole wall region, as shown schematically 
in Figure 6. 

Once calculated, the interpenetrating material is 
removed as shown in Figure 6b, thus establishing 
frictionless contact between the plate at its deformed 
state and the rigid drill bit. Upon removal of the 
machining and clamping loads, the plate assumes an 
unloaded state at which the trimmed hole wall region 
recedes away from an initially cylindrical configura- 
tion to form a three-dimensionally complex conical 
hole (see Figure 6~). As will be discussed, the latter, 
three-dimensionally complex hole shape will be sub- 
jected to optimization with the aid of one of several 
objective functions that are also developed as part of 
this work. It is thus critically important to develop 
robust techniques capable of extracting from a 3-D 
finite element solution the hole shape obtained in the 
drilling process. The mathematical formulation of 
such a technique is presented next. 

, , , , , 

(4 

Figure 5 
(a) Top View of a Deformed Finite Element Mesh obtained for a plate 
workpiece subjected to the F, and M drilling loads and fixturing geo- 

metric conditions consistent with those shown in Figure 1. 
(b) Closeup of Hole Boundary. Deformed mesh is depicted in solid 

lines and undeformed mesh in dashed lines. 

27 



Journal of Manufacturing Systems 
Vol. 2wNo. 1 
2001 

(during drllllng) 

Figure 6 
Simulation of Drilling Process. (a) A drill bit with diameter D placed 
in a preexisting bole of depth h,. (b) Drilling loads of thrust F, and 
torque Mare applied and the workpiece is deformed. The material 
interpenetrating workpiece/drill bit region is removed. (c) Drilling 
loads are relaxed and the workpiece relaxes to its unloaded state. 

3. Hole Shape Calculation Using 
Inverse lsoparametric Mapping 

Consider a two-dimensional eight-noded isopara- 
metric element that in its undeformed state is locat- 
ed at the boundary of the hole surface as shown in 
Figure 7. The coordinates (X,,Y,) of a point A in the 
interior of the element can be expressed as a weight- 
ed sum of the element nodal coordinates (J&Y,), i = 
1 - 8, as follows: 

In Eq. (I), N&, r~), i = 1 - 8, are the isoparametric 
nodal shape functions and 5 and q are the coordi- 
nates in the normalized isoparametric space. 
Through such an isoparametric mapping, the physi- 
cal domain occupied by the above element is mapped 
to a normalized domain bounded by -1 I 5 I +l and 
-1 5 n 5 +1 . Similarly, the displacement components 
uA and VA at the same point A are also expressed in 

terms of their nodal counterparts (UiwViw i = 1 - 8) 
through a similar weighted summation: 

Let point A after deformation assume a new position 
A’ located at (&*,YA,) on the admissible drilled sur- 
face, as shown in Figure 7. The position of the latter 
can be obtained from the original coordinates and 
the associated displacements at point A as follows: 

Equation (3) can be used to extract the isoparametric 
coordinates &‘,qA’) of point A’, which are equal to 
the isoparametric coordinates (&&nA). The latter val- 
ues are then inserted into Eq. (1) as needed to deter- 
mine the position of point A’ in its relaxed state 
(XA,YA). The relaxed hole surface r can thus be 
determined through the above-described inverse 
isoparametric mapping as the envelope of all materi- 
al points that the deformed state reside on the cylin- 
drical drill-bit surface. 

Y 

t 
r r: Hole Surfaca r: Drill blt 

I mgion to be 
trimmed 

Figure 7 
Closeup of Drilled Surface Zone. An eight-noded isoparametric ele- 

ment captures the drill bit surface r’ in the deformed state. Once the 
drilling loads are removed, r’ transforms into surface r, which is the 

shape of the obtained drilled surface. 
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The above two-dimensional inverse mapping tech- 
nique was expanded to account for the three-dimen- 
sional characteristics of the problem under consider- 
ation. The ensuing nonlinear inverse mapping equa- 
tions are solved with the aid of the Newton’s method 
embedded in a globally convergent strategy.20 

4. Optimum Design Problem 
Formulation 

A finite element mesh that characterizes the 
workpiece deformations and details the region 
around the hole enables one to formulate optimal 
fixturing as a constrained optimization problem. 
Here, the objective function A is expressed as a 
function of the design variables U, as discussed in 
Section 2. The five selected objective functions 
denoted as Ad u), i = l-5, are discussed in the next 
section, and their minimum has to reside in the 
domain defined by the following equilibrium and 
geometric constraints. 

Constraint Formulation 
The workpiece has to satisfy static equilibrium 

constraints: 

where FLj, Fcj, F,,,j, and F, are vectorial representa- 
tions of the locator reaction forces, clamping 
forces, machining forces, and the weight of the 
plate, respectively. Also in Eq. (4), TLi, Tcj, Tmj, and 
T,,, are vectors that contain the moments caused by 
the locator reaction forces, clamping forces, 
machining loads and pure torques, and the weight 
of the plate, respectively. Finally, in Eq. (4) above, 
nL9 nc9 nF9 and nT are the number of locators, 
clamps, machining forces, and moments, respec- 
tively. The locator reaction forces have to further 
be directed toward the workpiece 

i&,FL 2 0 I (5) 

where ALj is an outband unit normal vector of thejth 
locator surface. The workpiece also has to maintain 
resting equilibrium conditions prior to the applica- 
tion of the clamping forces. Resting equilibrium is 
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obtained by constraining the center of gravity of the 
workpiece (X,Y,> to be within the triangle formed 
by locators Li, L2, and L3, which must maintain non- 
collinearity. Resting equilibrium can be expressed 
mathematically using isoparametric representation 
of a triangular element 

where 5 and rl are derived as functions of the coor- 
dinates of the center of gravity of the workpiece and 
the three vertical locators as follows: 

5= XW(Y, -y-J-C(X& -x,)+&J, _X&YL, 

x&-%)+x&? -y4)+%(% -%) 

(7) 

The noncollinearity condition can be expressed in 
terms of the constraining locator coordinates as: 

X,(Y, -Y,)+X,(Y, -Y,)+x,(Y, -Y$O (8) 

In addition to satisfying the resting equilibrium con- 
dition, one has to enforce clamping equilibrium. The 
latter is obtained by enforcing (Xc,,Yc,) to be inside 
the triangle formed by locators L1, L2, and L3. This 
constraint results in mathematical expressions that 
are identical to Eqs. (6) and (7) in which (X,,Y,) are 
replaced with (X,-,,Yc,). Furthermore, the Y coordi- 
nate of C2 is restricted within the two opposite loca- 
tors L4 and Lg. The clamp C3 has to be directly across 
from Le. The physical boundaries of the workpiece 
define the workspace of the various components of 
the desired fixture. 

To prevent the vertical clamp Ci and locators Ll, 
L2, and L3 from interfering with the drilling process, 
the following constraints have to be satisfied: 

(xc, - x0_, )2 + ( yc, - Y,_, )’ ’ cm, 

(9) 

(x~,-xo,,~)2+(Y‘,-%_,)*>~~~, j=l-lk=l-l 

Here, (X& Y,J are the coordinates of the nominal cen- 
ter of the kth hole and R,,,, is its nominal radius. The 
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clamping forces are constrained to be positive and 
bounded to prevent undesired plastic deformations: 

Equations (4)-( 10) constitute the domain in which 
an optimal fixturing solution is sought. The objec- 
tive functions are presented in the next section. 

Objective Function Formulations 
Optimal fixturing solutions are obtained by mini- 

mizing one of the following objective functions Al, 
A 2, ***, or AS. These functions capture various mea- 
surements of geometric deviations of the machined 
hole surface. Objective functions A1 and A3 mini- 
mize the quadratic difference between the nominal 
and simulated radii and diameters as they are 
summed over the entire digitized machine surface. 
In evaluating Ai and A3, IZ measurements are taken in 
a plane, while m planes are measured across the 
workpiece thickness. These measurements are per- 
formed for I holes when sequential or simultaneous 
drilling operations are used. Thus, Ai and A3 are 
given by: 

(12) 

Here, Rgk and Diik are the radius and diameter of a point 
(iJ) at the kth hole and R,,,,, and Dno,,,, are the nominal 
radius and diameter of the kth hole, respectively. 

The maximum differences between the nominal 
and simulated radii and diameters are captured by 
the A2 and A4 functions, which are given by: 

A2 = MQJ(L~ - a) i=l-n,j=l-m,k=l-1 (13) 

A4 = ~~-+n,rn~ - %)2 i=l-n, j=l-m,k=l-Z (14) 

Note that A2 and A4 address geometric differences 
that are often used when performing a workpiece 
tolerance inspection. Objective functions A, and A2 
assume that the nominal location of the center of the 

hole can be identified, whereas & relies on the def- 
inition of the hole diameter as it is measured in a 
machine shop environment. 

The AS objective function measures the deviations 
of the machined surface from a perfect cylindrical 
shape. These deviations are captured by calculating 
for the kth drilled surface the quantities denoted as 
Ok, ‘Pk, and QZk that are defined as: 

Yk =;z:,[(q -jt,)l+(r, -E)‘] (16) 

(17) 

In Eq. (15), Ok measures the least-square fit of m cir- 
cles through the coordinates (X&x7) of points that 
reside on the machined surface. Here, a givenj cross 
section contains n points (i = l-n). The radii and 
center coordinates of the least-square fitted circles 
are denoted as Rls,, which is centered at (X,,Y,), 
respectively. The deviations of center coordinates of 
the m least-square cisles_ are captured by Yk given 
by Eq. (16). Here, (X0, 5) are the mean values of 
the center coordinates of the m least-square circles. 
In Eq. (17), sZk measures variatioe of the radii of 
the m least-square circles. Here, R,$, is the mean 
value of the radii of the m least-square circles. 
Finally, objective function A5 is a linear combination 
of the three measures Ok, Yk, and C& with designat- 
ed weights of a, p, and y: 

Proper selection of the a, p, and y weights is a 
research topic that has been partially addressed in 
Wardak.21 In essence, the above factors highlight the 
importance of the reciprocal term error as measured 
through Ok, Yk, and sZk given by Eqs. (15), (16), and 
(17), respectively. For example, if a = 1, p = 0, and 
y = 0, objective function A5 is used to minimize Ok 
given by Eq. (15), while relaxing any optimization 
demands on !Pk and sZk. This would imply that there 
is more interest in minimizing the surface roundness 
while tolerating a relatively inaccurate positioning 
of the hole. As stated above, an extensive parameter 
study that addresses proper selections of the factors 
a, p, and y is reported in Wardak.21 
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Conclusions 
A mathematical model that captures the shape 

and dimensions of drilled surfaces is presented. 
This model is based on FE analysis and techniques 
that handle material removal strategies, in which 
the drill bit is assumed to be rigid. This assumption 
is legitimate for large-diameter drills. This intro- 
duces a limiting factor of the presented model. The 
formulation focuses on fixturing parameters, such 
as position of locators, position of clamps, and 
magnitude of clamping forces, that define the fix- 
turing problem domain. In this domain, optimal 
fixturing parameters may be found by minimizing 
a user’s selected objective function. Five different 
objective functions, A,, A*, . . . . A5, that capture dif- 
ferent geometric characteristics of the machined 
surface are presented. In Part II of this two-part 
series of manuscripts, the optimization technique 
of simulated annealing (SA)22 is used, and the opti- 
mal fixturing layouts are evaluated for different 
drilling conditions. 
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