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Abstract-The micromorphic stress fields in the near-tip region of a Mode-I semi-infinite crack 
embedded in an infinite elastic bimaterial layered system are investigated. The local and global 
features of the micromorphic stresses in the heterogeneous near-tip domain are captured through 
an approximate analytical model vis-a-vis a two-dimensional plane strain finite element model. The 
studies are carried out within a heterogeneous cut-out region surrounding the physical crack-tip 
wherein alternating matrix and fiber layers are positioned perpendicular to the crack plane. The 
approximate analytical model is developed by postulating a general form of displacement field that is 
obtained by the superposition ofthe applied homogenized near-tip field and a family ofkinematically 
admissible unit-cell micro-displacements. While preserving the aggregate response of the material, 
these micro-displacements take into account the effects of material micro-structure. The results 
indicate that the microstress field in the immediate vicinity ofthe crack-tip exhibits an r - I

/
2 singularity 

when the crack-tip is located entirely within the matrix phase and lies sufficiently away from the 
adjacent interfaces. The structure of the stress field in the matrix region surrounding the crack-tip 
corresponds to the universal isotropic field dominated by the tip stress intensity factor. In the far­
field region (radial distance greater than one unit-cell thickness), the continuous stress components 
U xx and uxy are found to be dominated by the orthotropic stress intensity factor and found to be in 
good agreement with their homogeneous orthotropic counterparts. As expected, the discontinuous 
stress component Uyy is found to exhibit strong dependency on the material heterogeneity. While Uyy 

is domina ted by the applied orthotropic stress intensity factor, it is described by a discontinuous 
spatial eigen-function which has been obtained with the aid of the analytical approximate model. 
Several parameter studies are presented and implications on the mode-I brittle fracture in layered 
systems are discussed. © 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

In recent years, layered composites have received increasing attention due to their poten­
tially superior directional stiffness, strength and toughness properties. Ceramic and metal 
matrix layered systems are primarily considered for high temperature applications whereas 
unidirectionally fiber reinforced laminates are often used by the aerospace, automotive and 
durable goods industries mainly due to their superior mechanical properties. In addition to 
the above applications, layered morphologies are also used in component joining and 
protective coating systems, e1ectronic structures such as multi-Iayer capacitors and micro­
chip applications, and in advanced fiber optics for telecommunications and information 
technology. While exhibiting desirable mechanical characteristics, layered monolithic and 
fiber reinforced composite laminates mayaiso exhibit rather complex life-limiting failures. 
Several types of failures associated with multilayered systems have been observed and 
reported in the literature. The prominent modes offailure in layered systems inc1ude mixed­
mode de1amination, transverse cracking oflow strength layers, thin film decohesion, spalling 
and blistering of thin films, crack tunneling and film or substrate cracking. In periodically 
layered materials, a planar crack, under cyclic and/or environmentalloadings, may propa­
gate sub-critically through several layers forming a macroscopically weIl defined crack 
under mode-I loading. In brittle/ductile layered systems, mode-I cracks may propagate 
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perpendicular to the layers in the brittle phase while bridged by the ductile layers. The 
crack propagation in these systems is often achieved through renuc1eation of cracks in the 
brittle layers ahead ofthe crack-tip while the metallayers in the crack wake undergo plastic 
yielding and potentially experience debonding and separation from the adjacent brittle 
matrix [Dalgleish et al. (1989), Cao and Evans (1991), Deve and Maloney (1991)]. 

For a crack approaching abimaterial interface at a 90-degree angle, Suresh et al. 
(1992) showed experimentally and Sugimura et al. (1995) showed analytically that for 
brittle systems, the near-tip crack driving force or the elastic energy release rate, depends 
strongly on the stiffness of the layer ahead of the crack tip relative to the stiffness of the 
layer containing the crack-tip. Several studies [He and Hutchinson (1989), Martinez and 
Gupta (1993), Tullock et al. (1994)] have shown that the competition between crack 
deflection and penetration at the interface and subsequent evolution of fracture strongly 
depends on the properties of the constituent layers, the properties of the interface and the 
mechanics dominating the near-tip region. 

The problem of a planar crack terminating perpendicular to the interface between two 
isotropic half planes was studied by Zak and Williams (1963), Swenson and Rau (1970), 
Erdogan and Biricikoglu (1973), and Cook and Erdogan (1972). The near-tip mechanics 
of a crack terminating at the interface between two elastic anisotropic half planes were 
studied by Gupta et al. (1992), Ting and Hoang (1984) and Erdogan (1972). Finite geometry 
effects for isotropic bimaterials containing cracks ofvarious configurations were addressed 
by Lu and Erdogan (1983) and by Ballarini and Luo (1991). A comprehensive survey of 
solutions for mixed-mode cracking in layered systems has been reported by Hutchinson 
and Suo (1992). Zak and Williams (1963) showed that for cracks terminating at bimaterial 
interfaces the power of the singularity dominating the near-tip stress fields has the form r-Y 

with y i= ~ and 0 < y < 1 which hinders the direct use of a critical energy release rate 
criterion in assessing initiation of crack growth. However, Delale and Erdogan (1988) and 
Erdogan et al. (1991) showed that the deviation from the r- 1

/
2 singularity can be overcome 

by introducing gradient material properties within a small interface region. Compared to 
the large volume of research in characterizing the near-tip fields and fracture of two 
layer systems, relatively limited research has been reported for the analytically intractable 
problem of periodically layered systems containing cracks perpendicular to the layers. 
Recently, Ballarini et al. (1995) and Fish et al. (1993) presented results from numerical 
studies on the near-tip mechanics of mode-I cracking in periodically layered bimaterial 
systems. 

Motivated by the immense practical applications of layered systems, this work is 
devoted to the development of an approximate analytical model aimed at capturing with 
sufficient accuracy the local and global features of the near-tip fields for cracks embedded 
at 90-degree to the interfaces in periodically layered systems. The model predictions are 
compared with refined finite element solutions obtained by solving the related boundary 
value problem involving a heterogeneous near-tip region cut-out from the periodically 
layered system. The formulation ofthe problem is presented in Section 2. The development 
of the analytical model is fully described in Section 3 and the related finite element model 
is presented in Section 4. The results from the analytical model and finite element analyses 
are reported in Section 5 and discussed in Section 6 which also inc1udes parametric studies 
and implications on brittle fracture of the layered systems under consideration. The paper 
conc1udes in Section 7 with a summary of the salient findings of this work. 

2. STATEMENT OF THE PROBLEM 

The problem addressed in this work is shown in Fig. 1, where a semi-infinite crack 
embedded in an otherwise infinite perfectly bonded bimaterial layered system is shown. 
The bimateriallayered system is comprised of alternating matrix andfiber layers positioned 
perpendicular to the crack plane. This layered morphology may be used to represent either 
a fiber reinforced [0/90] cross-ply laminate or abimaterial periodically layered system. In 
this study, the materials for the two phases were taken to be homogeneous and linearly 
elastic. The thicknesses of the matrix and the fiber phases are taken to be Im and '-!' 
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Fig. 1. A semi-infinite crack in an infinite periodically layered bimaterial system. 

respectively, while I = Im + Ir represents the thickness of a fiber/matrix unit-cell. The cartesian 
coordinate system is chosen with its origin located at the crack-tip as shown in Fig. l. The 
loading is assumed such that overall mode-I conditions prevail. The crack surfaces are 
traction free and the crack-tip is assumed to be ideally sharp. Plane strain conditions are 
considered. For the approximate analytical model, the crack-tip is assumed to be in the 
matrix phase at mid-distance between the adjacent fiber layers. In formulating the near-tip 
finite element model, a cut-out region surrounding the physical crack-tip as indicated by 
the dashed lines will be considered. 

3. ANAL YTICAL MODEL 

The model is based on the non-standard analysis approach of Wozniak (1987) for 
problems with periodic material structure, wherein the displacements are postulated in terms 
of the homogenized orthotropic displacements augmented by a family of kinematically 
admissible unit-cell local displacements. Here it is emphasized that the effects of the geo­
metrically non-periodic macrocrack enter into the solution through the homogenized 
asymptotic fields. As such, the fundamental assumptions used by Wozniak (1987) in 
formulating the non-standard analysis for micro-periodic material structure are valid. In 
this approach, the local displacements are cast in terms of a unit-cell shape function which 
is known apriori and some unknown micromorphic parameter functions which depend on 
the degree of material heterogeneity and the lamination morphology via the layer volume 
fractions. While the micromorphic parameters describe quantitatively the effects of the 
micro-periodic material structure, the shape function describes the expected qualitative 
character of these effects. The unknown micromorphic parameters are obtained by invoking 
an energy minimization technique. The homogeneous domain solution is then obtained 
by solving the Navier displacement field equations subjected to homogenized boundary 
conditions. 

3.1. Deformation hypothesis 
Assuming that the global mechanical response ofthe layered system conforms to that of 

the homogenized orthotropic linear elastic model, the displacement field can be postulated in 
terms of the applied homogenized near-tip displacement field augmented by kinematically 
admissible unit-celliocal displacements [see, for example, Wozniak (1987), Matysiak and 
Wozniak (1987) and Kaczynski and Matysiak (1989)]. As such, under plane strain 
conditions, the actual displacement vector u = {u, v} T can be approximated as the sum of 
the macro-displacements ü = {ü, v} T and the local displacements ul = {ul

, Vi} T as folIows: 

u(x,y) = ü(x,y) + ul(x, y), 

v(x,y) = v(x,y)+vl(x,y). (1) 
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Fig. 2. A linear shape function profile within a matrix/fiber unit-cel1. 

While ü preserves the aggregate orthotropic response, uf = {uf
, d} T takes into account the 

effects of micro-periodic material structure. The micro-displacements can be expressed in 
terms of a unit-cell shape function h(x) and the micromorphic parameter functions gi(X, y) 
(i = 1,2) as follows: 

uf(x,y) = gl (x,y)h(x), 

d(x,y) = g2(x,y)h(x). (2) 

The shape function h(x) is an apriori known I-periodic function which satisfies the following 
periodicity and local equilibrium conditions : 

h(x) = h(x+/), 

rX
+

1 

Jx h(x) dx = O. (3) 

The unknown functions glx,y) are called the micromorphic parameters and they are 
assumed to be smooth functions of x and y. 

Any function satisfying eqn (3) can be taken as a candidate for the shape function and 
a homogenized model associated with the selected shape function can be obtained. This 
situation is analogous to that ofthe finite element method, where also we deal with different 
choices of the shape functions. The choice of a particular shape function may then be made 
based on the simplicity and accuracy of the homogenized model. In this study, several 
shape functions were tested and it was found that the linear shape function gave the most 
consistent and accurate results. A sectionally linear shape function for the bilayer periodic 
laminated composite is shown in Fig. 2. This shape function can be expressed as : 

(4) 

where Vm = Im/I, Vf = l) I and I = Im +~. Obviously, Vm and Vf represent the volume fractions 
of the matrix and the fiber layers respectively. As will be shown later in this work, the 
governing equations and ensuing homogenized material constants are independent of the 
amplitude {) of the shape function. As such, the value of {) is chosen to be the matrix layer 
thickness in the present study. 

For the postulated plane deformation field (1), the linearized strain-displacement 
relations take the following form : 
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Sxx = sxx+hgl,x+glh,x 

Syy = Syy + hg2,y 

rxy = Yxy+h(gl,y+g2,x)+g2 h,x' 
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(5) 

It is worth mentioning here that in the above equations the shape function hex) and its 
derivative are evaluated locally within the appropriate unit-cell consistent with the coor­
dinate x (see Fig. 2). 

3.2. Governing equations 
The generalized stress-strain relations for a linear elastic material are given by 

(6) 

where i, j = 1, 2, ... , 6 and summation from 1 to 6 is implied over the repeated index j. 
The above equations are derived using contracted notation such that {Si} = 
[sxx, Syy' Sm ryz> rzx, rXy]T, {O'J = [0' xx, O'yy, Um O'zy, O'zx, 0' Xy]T and [CU] is the six-by-six symmetrie 
elastic stiffness matrix. 

The strain energy density cjJ for a linear elastic body under plane conditions is given 
by: 

(7) 

where summation is implied over the repeated indices. The average energy density in the 
unit-cell of a layered system can be defined as: 

1 fX+1 
cf = 7 x cjJdx. (8) 

For an integrable real valued l-periodic function <p, i.e., <p(x) = <p(x+l), XE R we define the 
following auxiliary average values : 

1 fX+1 
(<p)=7 x <pdx 

1 fX+1 
<<P)I = 7 x <ph'(x)dx 

1 fX+1 
<<P)II =7 x <ph'(x)h'(x)dx (9) 

where h'(x) = 8hj8x. With the aid of eqns (5) and (7), the average energy density for a 
layered system can be obtained in terms ofthe macro-strains Bi' the micromorphic functions 
gi(X,y) and the averaged elastic properties of the stratified medium. More specifically, 
for a layered system comprised of either homogeneous orthotropic or isotropie layers 
(C16 = C26 = 0), the linearized average energy density is given by: 

cf = ~ [<CII )SI SI + 2(c12)SI S2 + (C22 )S2S2 + (C66 )S6S6] 

+[(cII)lslgl +<CI2)I S2g1 +<C66)I S6g2]+H<CII)llglgl +(C66 )llg2g2] (10) 

where the averaging notation introduced in eqn (9) is used to denote various averaged 
elastic constants. For the bilayer unit-cell shown in Fig. 2, the auxiliary averaged elastic 
constants are given by : 
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(11) 

where the superscripts m and f stand for the matrix and the fiber layers, respectively. 
Assuming that the equivalent homogenized orthotropic medium is hyperelastic, eqn (10) 
can be used to obtain the stress-strain relations for the effective medium as follows : 

_ o~ 
(1 .. =-

IJ OBij 
(12) 

where äij and Bij are the homogeneous orthotropic macro-stress and macro-strain 
components. 

The goveming equations for the macro-displacements Ü and iJ as well as the mic­
romorphic functions 9i(X,y) can be obtained through local stress equilibrium and astrain 
energy density minimization process for the homogenized medium. Specifically, the homo­
genized continuum must be in local equilibrium such that äijJ = 0 in the absence of body 
forces. Moreover, the strain energy density 4> ofthe homogenized continuum should attain 
a minimum with respect to the micromorphic functions 91 and 92 such that 04>/09i = 0 for 
all x, y E R. Thus, for plane strain conditions and in the absence of body forees, Ioeal 
equilibrium and strain energy minimization yield the following goveming equations : 

<CII )Ü,xx + «Cl2) + <C66) )iJ,xy + <C66)Ü,yy + <Cl I )191,x + <C66)192,y = 0 

<C66)iJxx + «Cl2) + <C66) )Ü,XY + <C22)iJ,xx + <C12)191,y + <C66)192,x = 0 

<CII)IÜ,x+<Cl2)liJ,y+<CII)1191 = 0 

<C66)liJ,x+<C66)IÜ,y+<C66)1192 = O. (13) 

The non-standard formulation of the elastieity problem for heterogeneous periodie layered 
systems is formally completed via eqns (1)-(13). The boundary conditions associated with 
the above goveming equations ean be imposed either in terms of displacements or traetion. 
By further eliminating the micromorphic parameters g;(x,y) from eqns (13), we obtain the 
goveming equations for the homogenized domain in terms of maero displaeements and 
homogenized elastie eonstants, Cij, as follows : 

where 

Cl I Ü,XX + (C12 + C 66 )iJ,xy + C 66 Ü,yy = 0 

C66iJ,xx+(C12+C66)Ü,xy+C22iJ,yy = 0 (14) 

(15) 

The above quantities Cij (i,j = 1,2 and 6) with CI6 = C26 = 0 are essentially the eomponents 
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ofthe symmetrie stiffness matrix for the homogenized eontinuum for which the eonstitutive 
relations ofthe form O"j = CiA (i,j = 1,2,6) apply. It is to be noted here that although <cu), 
and <Ci)ll are dependent on (bfl) as given by eqn (11), Cu are independent of (bi!). 

3.3. The micro mechanicalfields 
For a given set of boundary eonditions, the governing eqns (14) ean be solved for the 

maero-displaeement field ü = {a, v} T. The near-tip elasticity solutions for homogeneous 
orthotropie eraeked bodies have been obtained by Sih et al. (1965) and Kaezynski and 
Matysiak (1989). The solution by Sih et al. is presented in the Appendix with minor 
modifieations. As diseussed during the formulation of the non-standard elastieity problem 
for heterogeneous systems, the near-tip homogeneous orthotropie solution ean be used to 
represent the maero-displaeements a, v for the heterogeneous region shown in Fig. 3. In 
doing so, the eomplianee matrix [bij] (i,j = 1,2,6) used by Sih et al. is taken as the inverse 
of the effeetive elastie stiffness matrix [Cij] developed in eqn (15) for the homogenized 
domain. Thus, the miero-displaeement field ean be obtained at any point of the solution 
domain with the aid of eqns (1)-(2), (4) and (13). Thus, the miero-displaeements in the 
heterogeneous medium take the following form: 

V(m) = v- ~(x-x )(a +v ) 
V

m 
m S ,x (16) 

in the matrix phase and 

1 
u(f) = a+ -(x-xJ)(a,ax+a2Vy) 

vJ " 

v(f) = v+ c\x-xJ)(ay+v x) 
vJ " 

(17) 

in the fiber phase where ah a2 and a3 are material eonstants which depend on the elastie 
mismateh in the unit-eell. These eonstants for the bimaterial system under eonsideration 
are given by : 

I- 2R -----t-I 
Ll Ll L L L O~~:,a) 

t U T 
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t 
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Fig. 3. The plane strain boundary value problem used for the near-tip finite element studies. 
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The elastic micro-strains at every point in the heterogeneous solution domain can be now 
obtained with the aid of eqn (5). However, the terms containing the products of the 
shape function with the derivatives of micromorphic parameters g;(x,y) in eqn (5) are 
comparatively small and can be neglected. It is worth mentioning here that whereas the 
presence of these terms improves the accuracy of (J YY' it introduces small but non admissible 
traction discontinuities at the interfaces. Using eqn (5) and after neglecting terms containing 
derivatives of g;(x,y), the expressions for the non-zero strains in the matrix phase are 
obtained as: 

C(m) = 0 
yy ,y 

y(m) = (1- a
3 )(Ü +0 ) 

xy vm,y,X 

whereas in the fiber phase they are given by: 

(f) _ -
Cyy - V,y 

(18) 

(19) 

The micro-stresses in a particular layer ofthe solution domain can be obtained through the 
following local stress-strain relations: 

(20) 

where the superscript n in parentheses designates the layer within which the equations are 
applied. As before, in the above equations summation over the designated range of 1, 2 
and 6 is implied by the repeated index j. After combining eqns (18), (19) and (20), the 
micro-mechanical stresses take the following form : 

(21) 

Clearly, we notice that the stress components (J~"1 and (J~~ depend only on the homogenized 
stiffnesses and they are, in fact, identical to the homogeneous orthotropic stresses ij" xx and 
ij" xy- This result automatically enforces traction continuity along all matrix/fiber interfaces. 
For the crack-tip fields in the periodically layered systems, the macro displacements ü, 0 

and their derivatives in eqns (16)-(21) are taken to be those obtained by Sih et al. (1965). 
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4. NEAR-TIP FINITE ELEMENT MODEL 

The near-tip boundary value problem is shown in Fig. 3, which represents the cut-out 
region (see Fig. 1) surrounding the physical crack-tip of a macroscopic mode-I crack 
embedded at 90-degree to the interfaces of a laminate compact tension, centered crack plate 
or even a double cantilever beam specimen. The boundary of the cut-out domain shown in 
Fig. 3, is assumed to be within the region domina ted by the homogeneous orthotropic stress 
intensity factor, K~. This clearly requires that the dimension R of the cut-out region is both 
sufficiently larger than the characteristic microstructurallength and also sufficiently smaller 
than a characteristic macroscopic specimen dimension such as the crack length or specimen 
height or uncracked ligament size. As shown in Fig. 3, the physical dimensions of the ne ar­
tip region were taken to be 2R x 2R. The near-tip solution domain comprises of alternating 
layers of the matrix and the fiber consistent with the lamination morphology used in the 
development ofthe analytical approximate model. While the crack surfaces were considered 
traction free, symmetry boundary conditions consistent with mode-I loading, namely zero 
displacement in the y-direction and zero force in the x-direction, were imposed at all nodes 
ahead of the crack-tip. The asymptotic mode-I homogeneous orthotropic displacements 
were imposed on the remaining part of the boundary. This displacement field, which is 
characterized by the remote orthotropic stress intensity factor K~, has the following form: 

{u} = KJ Ir Re {U(8, bi)}, 

v y 2; V(8, bij) 
(22) 

where rand 8 are the polar coordinates as shown in Fig. 3, bij are compliancies of the 
homogeneous orthotropic medium, and U and V are the spatial complex eigen-functions 
obtained by solving the near-tip mode-I asymptotic problem for a homogeneous orthotropic 
medium. The explicit forms for U and V are given in the Appendix. 

The layered cut-out region was discretized using sufficient number of eight-noded 
isoparametric elements as needed to capture high stress gradient fields. A typical finite 
element mesh used in this study is shown in Fig. 4. In order to investigate the effects of dual 
length ratio R/l [Ballarini et al. (1995)] and the crack-tip location with respect to the 
matrix/fiber interface, various meshes were constructed using an automated mesh generator 
for the layered systems. In all cases, a focused mesh was used in the immediate vicinity of 
the crack-tip which was surrounded by a rosette of singular quarter point elements to 
capture the expected square root singular stresses. The near-tip finite element solutions 
were obtained using the in-house finite element software DENDRO and the commercially 
available finite element package ABAQUS. A full integration scheme was used in the 
integration of the element stiffnesses. 

5. RESULTS 

In this section, the near-tip field quantities predicted by the analytical approximate 
model and those obtained numerically via the method offinite elements are presented. The 
model and finite element predictions are compared with each other and with the known 
near-tip analytical solution for isotropic and homogeneous orthotropic media. As discussed 
earlier in this work, overall plane strain conditions were considered. Thus, it was assumed 
that the out-of-plane thickness of the layered system was sufficiently large compared to a 
specimen characteristic length such that the conditions of plane strain prevailed in the 
interior away from the lateral traction free surfaces. 

The results presented in this section were obtained for abimaterial layered system 
comprised of alternating isotropic elastic layers. As mentioned earlier, the softer material 
is referred to as the matrix phase and the stiffer material is referred to as the fiber phase. 
Results were obtained for various moduli ratios A = EJ/ Ern and fiber volume fractions vJ' 

where subscripts fand m represent properties for the fiber and the matrix phases, respec­
tively. In all cases, the Poisson's ratio for each layer was taken to be vJ = Vrn = 0.3. Without 
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Fig. 4. (a) A finite element mesh used in solving the near-tip boundary value problem shown in 
Fig. 3. (b) Details ofthe focused near-tip mesh. 

loss of generality, most of the results presented in this paper correspond to A = 10 and fiber 
volume fraction vf = 0.5. In order to investigate the effects of the actual number of layers 
in the laminate on the near-tip mechanics, systems with duallength ratios Rjl = 5, 10, 25 
and 50 were considered. The stresses are normalized with the reference stress 
(Jo = KU~, while the displacements are normalized with the reference displacement 
Uo = KUEoJ R12n, and the spatial distance is normalized with a reference length R. As 
before, K~ represents the homogeneous orthotropic mode-I stress intensity factor and Eo is 
the reference modulus which for this study is taken to be the matrix modulus Ern. 

5.1. Near-tip displacements 
The radial variation of the normalized displacements at an angular position () = 45° 

are shown in Fig. 5(a). The displacement components as obtained by finite element analysis 
were found to oscillate around the corresponding homogeneous orthotropic displacements. 
The approximate analytical model predicted the displacement field quite accurately 
throughout the solution domain with some deviations observed within the first unit-ceH 
from the crack-tip. The angular variation of the normalized displacements at a radial 
distance rlR = 0.8 is shown in Fig. 5(b). It is observed that the proposed model is capable 
of capturing the displacement field fairly weH over the entire angular region. 

5.2. Normal stress ahead 0/ the crack-tip 
Profiles for the normalized (Jyy acting on the plane ahead ofthe crack-tip are shown in 

Fig. 6. The results are plotted on a log-log scale such that the slope of the stress profile 
indicates the strength of the dominant singularity. Results for systems of duallength ratios 
Ril = 5,10,25 and 50 are reported in Fig. 6(a)-(d). For comparison purposes, the analytical 
homogeneous orthotropic stress predictions are also presented. In the above figures, the 
heavy solid line represents the homogeneous orthotropic singular stress, the thin continuous 
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1859 

line represents the approximate model prediction while the dotted line represents the finite 
element results. The unit-cell average results were obtained by integrating the finite element 
microstresses across a fiber/matrix unit-cell and dividing by the length of the unit-cell 
consistent with Ballarini et al. (1995). As expected, for all systems considered, the stress 
profiles are discontinuous at the fiber/matrix interfaces due to the elastic modulus mismatch 
between the two material phases and the stress in the compliant matrix phase is consistently 
lower compared to that in the stiffer fiber phase. Again for all systems considered, the stress 
in the immediate vicinity of the crack-tip exhibits an ,-1/2 variation almost up to the first 
interface ahead of the crack-tip. In the subsequent fiber and matrix layers, the local micro 
stress distribution appears to deviate from the ,-1/2 dependency mainly due to the effects 
of strong material heterogeneity. However, the overall stress pattern in the matrix as weIl 
as in the fiber phases seems to be confined within an ,-1/2 singular envelope which is 
nicelycaptured by the analytical approximate model. This observation suggests that the 
microstress a yy in the fiber and the matrix phases is dominated by the orthotropic stress 
intensity factor and a discontinuous spatial eigen-function which accounts for the observed 
stress discontinuities. As shown in Fig. 5, the near-tip heterogeneous stresses predicted by 
the approximate analytical model match very closely with the finite element solution. It is 
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Fig. 6. Normal stress profiles ahead of the crack-tip. 

to be noted here that the r- I
/
2 stress singularity of the model results from the homogeneous 

orthotropic near-tip displacement field which inherently contains this feature. 

5.3. Angular micro-stress profiles 
The angular variations of the normalized micro-stress components axx/ao, ayy/ao and 

axy/ao at a normalized radial distance r/R = 0.001 as a function of angular position e are 
presented in figure columns 7(a) through 7(c). Since this region falls entirely within the 
matrix phase surrounding the physical crack-tip, the isotropic singular solution is also 
plotted. The tip stress intensity factor K?P = O.4K~ was obtained by matching the analytical 
isotropic stress ayy(x, 0) at the crack-tip with that obtained by the finite element calculations. 
It was found that the stress field in the immediate vicinity of the crack-tip exhibits almost 
isotropic behavior. Through separate studies [Jha et al. (1995)] it has been shown that the 
tip stress intensity factor K~ip is strongly dependent on the erack-tip location with respect 
to the adjacent matrix/fiber interfaces. As shown in Fig. 7(a)-(c), in high duallength ratio 
systems, i.e., R/l = 25 [see Fig. 7(c)], the values ofaxx appear to deviate slightly from their 
equivalent isotropic results. This deviation is to be expected since the region dominated by 
the isotropic field diminishes with increasing duallength ratio R/l. The results reported in 
Fig. 7 are obtained at a fixed distance r/R = 0.001 from the crack-tip and as such, the slight 
deviation shown by the axx-component in 7(c) may reftect the effects of the diminishing 
isotropic zone with R/ l. 

The angular variation of the normalized micro-stress components axx/ao, ayy/ao and 
axy/ao at a normalized radial distance r/R = 0.8 are shown in figure columns 8(a) through 
8(c). While the stress field dominating the matrix material in the immediate vicinity of the 
crack-tip was found to be consistent with the isotropie fields and exhibited sensitivity to 
the location ofthe physical crack-tip, the stresses away from the crack-tip at radial distances 
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the tip. 

beyond one unit-cell thickness, were found to be unaffected by the actual tip location 
relative to the adjacent matrix/fiber interfaces. Consistent with the heterogeneous micro 
structure, (Jyy is found to be discontinuous at the matrix/fiber interfaces. While the con­
tinuous stress components (J xx and (J xy are shown to be in good agreement with their 
orthotropic counterparts, the discontinuous stress (Jyy is found to oscillate around the 
homogeneous orthotropic solution. This oscillation of (Jyy arising from the material hetero­
geneities is very nicely captured by different eigen-functions associated with the matrix and 
the fiber phases. For all systems considered, the predictions of the approximate analytical 
model were found to be in a remarkable agreement with the finite element solutions. This 
enforces confidence in the approximate model which can be used to extract additional 
information regarding the structure of the micro-stress fields and their implications on 
mode-I fracture in layered systems. 

5.4. Radial profiles of (Jyy stress 
The stress profiles along several radii emanating from the physical crack-tip are shown 

in Fig. 9. As before, the results presented here are those for a layered system with moduli 
ratio A = 10, vJ = Vm = 0.3, fiber volume fraction vJ = 0.5 and duallength ratio R/ 1= 10. 
The results shown in Fig. 9 correspond to radii at angular positions () = 0, 30, 45, 60, 120 
and 135 degrees, respectively. The discontinuities in (Jyy are consistent with the matrix/fiber 
interface locations. As evident from the above results and the results shown in Fig. 7, the 
oscillating characteristic of (J yy is found due to the presence of a discontinuous spatial eigen­
function that describes (Jyy in bimateriallayered systems. As shown, the approximate model 
is in remarkable agreement with the finite element results. 
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6. DlSCUSSIONS 

The results reported in Figs 6-9 provide meaningful insights on the mode-I near-tip 
meehanies in layered systems. The results of this investigation suggest that the near-tip 
region in layered systems is dominated by three distinet stress fields. More speeifieally, the 
stress fields in the matrix region surrounding the eraek-tip appear to be those obtained for 
isotropie systems. On the other hand, the stress fields in the outer near-tip annulus domain 
appear to be the part of an overall r- I

/
2 singular field dominated by the orthotropie stress 

intensity faetor. The inner and the outer K-dominated fields are linked through a narrow 
transition zone, the extent ofwhich appears to be limited to approximately one fiber/matrix 
unit-eelllength. The elastie fields in these three regions and their implieations on fraeture 
are diseussed in the following subseetions. 

6.1. Elastic fields in the innermost region I 
As diseussed by Charalambides (1991) and Ballarini et al. (1995), the extent of the 

innermost zone is limited by a eharaeteristie miero-length such as the spaeing b between 
the eraek-tip and the first matrix/fiber interface as shown in Fig. 10. This study suggests 
that material points within region-I bounded by a radius rl :::::: (0.01- 0.1 )lrn are dominated 
by the isotropie asymptotie K-field the strueture of whieh is not affeeted by the hetero­
geneous miero-strueture. While the spatial variation ofthe elastie fields in region-I is shown 
to be that of the isotropie fields, the dominant stress intensity faetor K7p is found to depend 
on the heterogeneous miero-strueture of the layered system. This dependeney was first 
reported by Ballarini et al. (1995) and it has been verified through the present studies. While 
Ballarini et al. (1995) reported numerieally obtained diserete values of the relationship 
between K7p and the remotely applied K'j, the analytieal approximate model developed in 
the present study ean be used to establish this relationship. As observed in Fig. 6, (Jyy 

appears to be dominated by the same stress intensity faetor in the matrix region-I as well 
as in all other matrix layers. This observation has very strong implieations as the tip stress 
intensity faetor K7p

, at least for the geometry under eonsideration, ean be defined as: 

(23) 

In isotropie bimaterial layered systems, the expression for (J;y given in eqn (21) ean be 
rewritten in the redueed form: 

(24) 

Here, Vrn and Ern represent the Poisson's ratio and the elastie modulus of the matrix material 

Mode I 
crack 

Fig. 10. A schematic representation of the small singular region I surrounding the crack-tip in 
bimateriallayered systems. 
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respectively. The model prediction for the continuous stress component (Jxx is identical to 
that predicted by the homogeneous orthotropic solution, so it can be replaced by the first 
equation of (A.3) in the Appendix. Similarly, the average strain Eyy can also be expressed 
in terms of the homogeneous orthotropic stress intensity factor. With the above sub­
stitutions and further simplification, the tip stress intensity factor can be obtained with the 
aid of eqn (23) as: 

(25) 

where r I is a non-dimensional function which depends implicitly on material constants A, 
Vm , vJand the fiber volume fraction vJand is obtained as the real part of a complex function 
of the above properties as follows : 

(26) 

In eqn (26) J1.], J1.2 are the roots of the characteristic eqn (A.5) given in the Appendix and 
q], q2 are those defined by eqn (A.6). 

The effects of the moduli ratio A and the fiber volume fraction vJ on the tip stress 
intensity factor Kfp are shown in Fig. 1l. In Fig. 11 (a), the normalized tip stress intensity 
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factor is plotted against the moduli ratio A for various fiber volume fractions vI' The above 
results were obtained assuming that the crack-tip was located in the middle of the matrix 
phase. The discrete points in the above figure represent finite element predictions for a 
system wherein vI = 0.5. It is observed from Fig. 11 (a) that by increasing the fiber volume 
fraction, higher shielding effects are produced for A > 1 while amplification takes place for 
A < 1. It is interesting to note that the rate of increase of amplification with respect to the 
fiber volume fraction is higher compared to the rate at which shielding increases. For A > 1, 
we find a remarkable agreement between the model prediction and the numerical results. 
The tip stress intensity factor against fiber volume fraction is shown in Fig. 11 (b). The 
model predictions are reported for A = 0.1,0.2 ... 10 while the finite element results in Fig. 
11 (b) correspond to A = 10. A good agreement is found between the model and the finite 
element results over the full range of fiber volume fraction. 

6.2. Elastic fields in the outermost region III 
As discussed above, the isotropic stress intensity factor K1p given by eqn (25), domi­

nates the elastic fields in region-I shown in Fig. 10. While the above finding applies to a 
relatively very small region surrounding the crack-tip (see Fig. 10), the stresses at radial 
distances greater than a fiber/matrix unit celliength have been shown to be dominated by 
the applied orthotropic stress intensity factor Kr The stress components Cixx and Cixy in 
region-III are continuous and are found to be in good agreement with their homogeneous 
orthotropic counterpart. The Ciyy is described by a discontinuous spatial eigen-function 
which accounts for the observed discontinuities. As demonstrated earlier in this study, the 
above behavior is captured by the analytical approximate model. With the aid of the 
approximate model, it can be shown that the continuous stress components in region-III 
are given by: 

(27) 

(28) 

where FxxO and FxyO are eigen-functions identical to those reported in the Appendix 
for the homogeneous orthotropic problem. Similarly, the discontinuous stress Ciyy can be 
expressed as : 

(29) 

where Fyy(') is a piece-wise continuous spatial eigen-function which exhibits discontinuities 
at all matrix/fiber interfaces. For plane strain, the explicit form ofthe discontinuous eigen­
function for layer type j is given by: 

Obviously, F~y changes with the change in material phase and eigen-functions for the matrix 
and fiber phases are obtained by allowing the indexj to become either m for the matrix or 
ffor the fiber phases in the above equation. Thus, the stress and deformation fields in the 
outermost region-III, can be fully described via the orthotropic stress intensity factor K~ 
and the spatially discontinuous eigen-function Fyy{·). 
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6.3. Elastic fields in the transition region II 
While the approximate analytical model does not allow for an intermediate transition 

stress fields, the refined finite element results support the existence of this region. As an 
evidence to this fact, the normalized (J xx stress component ahead of the crack-tip has been 
plotted against the normalized distance on a log-log scale in Fig. 12. It is noticed that the 
isotropic field dominating the matrix region in the immediate vicinity of the crack-tip (see 
Fig. 10) changes very rapidly to the field dominating the outermost annular region. As 
shown by this study and the study by Ballarini et al. (1995) the transition from region-Ito 
region-lII takes place within the first fiber/matrix unit cell and appears to be slightly 
dependent on the dual length ratio. As discussed earlier in this work, it has been shown 
through complementary studies [Jha et al. (1995)] that the stress intensity factor dominating 
the near-tip fields in matrix region-l is sensitive to the crack-tip location relative to its 
adjacent matrix/fiber interfaces. The same complementary studies suggest that the remote 
stress fields in region-lII are not affected by the actual crack-tip location within the matrix 
phase. As a result of the above observations, it is expected that the profiles of the elastic 
transition fields will depend on the actual crack-tip location within the matrix phase whereas 
the extent ofthe transition zone will be minimally affected by the actual crack-tip location. 

6.4. lmplications on Jracture 
As shown by this and other studies [Ballarini et al. (1995) and Fish et al. (1993)], a 

rather complex stress pattern exists in the crack-tip region of layered systems containing a 
crack oriented at 90-degree to the main layer direction. This stress pattern has direct 
implications on the process of mode-I fracture in layered brittle systems. As discussed 
earlier in this work, the elastic stresses in the matrix region-l in the immediate vicinity of 
the crack-tip (see Fig. 10) are dominated by the tip stress intensity factor K7p given by eqns 
(25) and (26). Thus, the elastic energy release made available for brittle fracture of the 
matrix material in the crack-tip region is obtained via Irwin's relation as follows: 

(31) 

By replacing K7p in the above equation with its equivalent given by eqn (25), ~7P takes the 
following form: 
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(32) 

While the above equation predicts the near-tip energy release rate associated with the fields 
dominating the matrix material in region-I (see Fig. 10), for the same loading and specimen 
geometry (i.e., same Kn different amounts of energy release rate are made available for 
composite fracture. Here, composite fracture implies that crack growth initiation as pre­
dicted through a Griffith failure criterion extends at least a matrix/fiber unit-cell. Such an 
event can be predicted by comparing the energy release rate estimated for the homogenized 
orthotropic medium '1J~, to an effective composite toughness '1Jb As discussed by Sih et al. 
(1965), for given KJ, the associated energy release rate '1J~ is given by 

(33) 

where bij = [Cd -1 (i,) = 1,2,6) represents the effective orthotropic elastic compliancies of 
the homogenized medium. The above equation can be rewritten as follows : 

(34) 

where Am is a nondimensional function and Ern and Vm are the Young's modulus and 
Poisson's ratio ofthe matrix material respectively. Und er ideally brittle fracture conditions, 
fracture of the layered system may occur as a result of two possible failure events. In one 
possible failure event, crack growth initiation may first occur within the matrix region 
surrounding the crack-tip (see region-I in Fig. 10) while the fiber layers remain intact. In 
accordance with this failure scenario, crack extension entirely within the matrix may then 
follow the initiation of crack growth potentially leading to multiple matrix cracking with 
the bridging fibers still resisting catastrophic composite failure. Under increased applied 
loads, other events such as fiber layer debonding, fiber failure and fiber pull-out may 
precede the ultimate composite failure. While the above fracture processes may occur as a 
result of the initiation of matrix cracking prior to fiber failure, a second scenario exists 
wherein fiber failure may occur prior to matrix cracking initiation. Under this failure event, 
although the energy release rate made available to the matrix region-I at the crack-tip may 
not exceed the toughness of the matrix material for crack growth initiation, individual 
fibers ahead of the crack-tip may start failing. Such initial fiber failures may induce sec­
ondary failure events emanating at either the tips of the newly nuc1eated fiber cracks or at 
the tip of the major crack in the matrix region or at both tips simultaneously. In any case, 
when fiber failure occurs first, failure in the lower toughness matrix material becomes 
inevitable leading to brittle fracture of the entire composite. The exact order in which the 
above two failure events may occur can be assessed by applying Griffith's fracture energy 
criterion at the tip of the main crack as required to assess matrix failure while maintaining 
a below critical energy release rate for the homogenized composite. Thus, matrix failure 
prior to composite failure is predicted if: 

(35) 

where '1J'Fc and '1J~c are the apparent fracture toughnesses of the matrix phase and the 
homogenized layered composite respectively, and '1J7p and '1J~ are the respective energy 
release rates made available for the creation ofnew surfaces in the matrix region-Ionly and 
the broader homogenized tip region respectively. By dividing the above equations by parts, 
the following inequality for matrix failure over composite catastrophic fracture is obtained: 
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(36) 

In order to explore the above finding further, we shall consider an example system as 
folIows. Let A = 10 and ~{c = 3~'JC where ~'Fc is the mode-I toughness of the matrix phase 
and ~{c is that of the fiber. During composite fracture, the new fracture surfaces generated 
can be multiplied by the respective matrix and fiber fracture energies to obtain the apparent 
composite toughness ~~c such that : 

(37) 

where vJis the fiber volume fraction. By combining eqns (36) and (37) we obtain: 

(38) 

For the system considered in this example, and after evaluating ~fp and ~~ through eqns 
(32) and (34) respectively, the left and right hand side of eqn (38) can be independently 
plotted a shown in Fig. 13. For the example system under consideration the two curves 
intersect at a critical fiber volume fraction v'J = 0.47. Clearly, in this example, for systems 
with fiber volume fraction vJless than the critical value vJ = 0.47 defined by the intersection 
of the two curves, the energy made available for composite failure exceeds the apparent 
composite toughness while the energy made available for matrix cracking remains below 
the critical value for matrix crack growth initiation. Therefore, when vJ < vJ and as indi­
cated in Fig. 13, composite failure is predicted to occur prior to matrix cracking. On the 
other hand, when vJ > vJ then matrix cracking consistent with the first fracture event 
discussed earlier in this section is predicted to take place prior to composite failure. This 
mayaIso suggest that as ~{c/~'Fc increases, critical fiber volume fraction vi' decreases. 

Clearly, the above discussion highlights the significance of being able to predict with 
sufficient accuracy the discontinuous microstress fields dominating the near-tip region of 
cracked layered systems. It is also understood that the actual events dominating fracture in 
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such complex systems will be significantly dependent on potential non-linear material 
responses such as microcracking damage in ceramies and ductile yielding in metallayers. 
Although, realistic fracture models are needed to account for such non-linear events, such 
studies are beyond the scope of this work which addressed the linear response and fracture 
behavior of cracked layered system under mode-I loading conditions. 

7. CONCLUDING REMARKS 

The micromorphic e1astic fie1ds in the near-tip region of a mode-I crack embedded at 
90-degree to the layers in the periodically layered systems have been investigated using an 
approximate analytical model and the method of finite elements. The micro mechanical 
fie1ds at radial distances greater than a fiber/matrix unit-cell were found to be dominated 
by the orthotropic stress intensity factor and a set of eigen-functions which account for the 
admissible stress discontinuities. An expression for the stress intensity factor, KYP, which 
dominates the isotropie field in the matrix region-I surrounding the crack-tip has also been 
obtained. More specifically, KYp was found to be related to the orthotropic stress intensity 
factor, KL via a material dependent function. In general, it has been shown that the singular 
micro mechanical elastic fields in such layered systems can be constructed from the homo­
geneous orthotropic field by introducing an apriori known shape function and certain 
unknown micromorphic parameters which take into account the effects of the micro­
periodic material structure. The effective elastic constants for the homogenized medium are 
easily obtained by the assumed apriori known shape function and they are independent of 
both the unit-cell geometry and the amplitude of the shape function. The micro mechanical 
elastic fields predicted by the approximate analytical model match very c10sely with the 
finite element solution except in the region very near to the singular point, i.e., the crack­
tip. 

While the unit cell average stresses match very c10sely with the analytical homogeneous 
orthotropic solution, the actual singular stress fie1ds in the lamina ted systems cannot be 
captured with homogenization. The approximate analytical model presented in this paper 
can be effectively utilized to predict the micro mechanical fields with sufficient accuracy in 
these periodically layered systems. The model can also be used to assess fracture initiation 
in brittle layered systems. 
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APPENDIX 

Near-tip fields in homogeneous orthotropic materials 
For an anisotropic material, the generalized Hooke's law is given by 

8;=S;pj i,j=I,2,6 (A.!) 

where [s;j] = [Sj;] is the compliance matrix for the material. When the material has a plane of elastic symmetry 
normal to z-axis, the Hooke's law for the deformation in the (x,y) plane [Lekhnitskii (1963)] reduces to 

8;=b;pj i,j=I,2,6 (A.2) 

where 

for plane stress 

for plane strain' 

For the Mode-I loading considered in this paper, the stress and the displacement fields in the neighborhood of 
the crack-tip are given by [Sih et al. (1965)] 

(f =~Re[~( f-t2 - f-t] )] 
xx for f-tl -f-t2 J COSe+f-t2 sine Jcose+f-t] sine 

(f =~Re[~( I - 1 )] 
xy for f-t]-f-t2 Jcose+f-t] sine JCOSe+f-t2 sine 

(A.3) 

(A.4) 



Mode-I elastic fields 1871 

where K~ is the Stress Intensity Factor and Jl; = r1.j + ißj (j = 1,2) are the roots (with ßj > 0) of the characteristic 
equation 

and 

Pj = bllJlJ +b 12 -b l6 Jlj 

qj = b12 Jlj + b22 IJlj-b26 • 

The partial derivatives of the displacements are given by : 

(A.5) 

(A.6) 

(A.7) 




