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Modeling the effects of stress
concentrations on the initiation of
matrix cracking in woven CMCs

M.P. Rao1,2, M. Pantiuk1 and P.G. Charalambides1

Abstract

In this study, we employ detailed three-dimensional (3D) finite element models of plain and satin weave ceramic matrix

composites (CMCs) as needed to establish the stress concentration around existing voids and their effect on the elastic

response of these complex material systems. Fundamental 3D elasticity boundary value problems addressing

the response of these materials under a combination of remote biaxial tension, in-plane shear, and thermal loading

are utilized to characterize the matrix micro-stresses in the vicinity of large-scale macroscopic voids. The combined

stress fields are then used to assess the conditions for the initiation of matrix cracking in such regions of high-stress

concentration. Comparison of model results with available experimental data is discussed. Extensive parametric studies

have yielded broad matrix cracking loci, which may be critical for the reliable use of woven CMCs in engineering

applications.
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Introduction

Woven fabric composites can be engineered to provide
high strength and toughness in comparison with con-
ventional monolithic materials for a wide variety of
land-, sea- and space-based applications. However,
these materials are characterized by a complicated
three-dimensional (3D) geometry and intricate micro-
structures.1–13 As such, intricate solution techniques are
needed to perform the stress analysis of such materials
and quantify the mechanisms which drive ultimate fail-
ure in these systems.

When woven ceramic matrix composites (CMCs) are
loaded in-plane, micro-failure events such as matrix
micro-cracking, fiber debonding, fiber crack surface
bridging, frictional fiber pull-out, and fiber tow delami-
nation have been shown to occur.14,15 Such systems
often exhibit a nonlinear stress–strain curve character-
ized by a graceful ultimate failure.15 Under the influ-
ence of high-temperature gradients, the strength of
woven CMCs has been shown to decrease mainly due
to the presence of thermal stresses induced during
processing and operating temperature changes. Such
residual stresses are often amplified by the mismatch
in the coefficients of thermal expansion (CTEs) between

the fibers and matrix material.16 In most engineering
applications, the Proportional Limit (PL) also known
as ‘the first knee’ on the stress–strain curve, is used as
the guiding design criterion. This ‘first knee’ has been
shown to coincide with the ‘first matrix cracking’ stress
identified as the PL of the woven composite material.17

In Haan17 and Kuhn et al.18 a progressive stress-
induced micro-cracking damage model is employed to
study the stress-induced damage evolution in Plain
Weave (PW) CMC systems. Those studies clearly
showed that upon initiation of micro-cracking
damage at sites of stress concentration, the apparent
stress–strain curve exhibits its first deviation from
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linearity. The study also showed that the ‘knee’ of the
apparent stress–strain curve becomes more pronounced
in systems capable of higher saturation damage densi-
ties. In light of the above, the linear fields are employed
in this study to identify the end of the linear regime,
which we define as the PL.

In addition, experimental stress–strain curves of
various woven CMCs, reported in Morscher12,13 and
Smith et al.19 clearly indicate the presence of a ‘knee’
delineating the linear and the non-linear regions of the
composite’s macro-mechanical response. Employing
modal Acoustic Emission (AE) techniques, it was
shown in Morscher12 that, low-energy AE events corre-
spond with the formation of matrix micro-cracks
within the linear regions of the response. High-energy
AE events on the other hand,12 indicate coalescence or
bridging of large matrix cracks that propagate in the
through-thickness direction. In particular, Morscher12

linked the onset of nonlinearity with the above high-
energy AE events. The stress corresponding to the

‘knee’ in the stress–strain curves could be regarded as
the PL strength of woven CMCs, associated with high-
energy AE events.

Thus, from the standpoint of engineering design, the
PL stress of woven CMCs is a parameter of critical
importance. Therefore, the objective of this study is
to develop broad matrix cracking failure loci for plain
and satin weave C/SiC systems subjected to a combina-
tion of in-plane mechanical and thermal loads often
induced during cooling due to thermal expansion
mismatches between the fiber and matrix phases.

Geometric modeling and
material properties

The representative 3D finite element meshes of the
repeating unit-cells of woven CMCs described in this
study are illustrated in Figures 1 and 2. In particular,
Figure 1(a) and (b) represents the PW and Four
Harness (4HS) satin weave architectures, whereas
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Figure 1. Representative finite element meshes of the PW and Four Harness satin weave CMCs employed to address fundamental

thermo-elastic boundary value problems. (a) and (b) Finite element meshes displaying the layered structure of the PW and Four

Harness satin weave CMCs, respectively, along with the definitions of the corresponding spatial geometric parameters used to

construct the meshes. (c) A blow-up of the element set containing the finite elements closest to the individual chosen matrix voids in

the unit-cell. (d) Section of the central matrix void showing the region of stress concentration. The thick solid circle represents the

location at which the stresses are extracted.
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Figure 2(a) and (b) depicts the Five Harness (5HS) and
Eight Harness (8HS) satin weave morphologies.
Furthermore in Figures 1 and 2, parts (c) and (d)
bring to light, the geometric details of local macro-
scopic matrix voids chosen for stress averaging as
would be discussed in a later section. The normalized
geometry parameters utilized to construct the indivi-
dual finite element meshes in Figures 1 and 2 are
listed in Table 1(Panel A). The 3D finite element
meshes employed herein were developed based on the
geometry normalization scheme and tow and matrix
layer mathematical surface functions presented in
Rao et al.20

The study presented by Morscher13 includes multiple
micro-graphs of woven CVI CMCs, wherein the spatial
distribution of macroscopic voids is either evident or
could be easily inferred. As reported elsewhere,21

these repeating unit-cell models have been employed
to predict undamaged effective elastic properties of

woven CVI CMCs, which, as reported in Rao21 were
shown to be in excellent agreement with experimental
data.

The fiber tows in woven CMCs constitute hierarch-
ical material entities with directional properties. Due to
this complexity, we need to employ the homogenized
thermal properties of fiber tows in the finite element
model. The fibers in general, could be modeled as trans-
versely isotropic with Ef

L, �
f
LT, and G f

LT representing the
fiber longitudinal elastic modulus, and in-plane
Poisson’s ratio, and shear modulus. Similarly, Ef

T,
� f
TL, and G f

TL represent the fiber transverse elastic mod-
ulus, and reciprocal in-plane Poisson’s ratio, and shear
modulus, respectively. The fiber coating around the
fibers is modeled as an isotropic material entity with
elastic modulus Efc and Poisson’s ratio �fc. Owing to
the CVI process of ceramic matrix deposition, the
matrix within bundles (bundle matrix) and the matrix
material surrounding bundles (inter-bundle matrix) are
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Figure 2. Representative finite element meshes of the Five Harness and Eight Harness satin weave CMCs employed to address

fundamental thermo-elastic boundary value problems. (a) and (b) Finite element meshes displaying the layered structure of the Five

Harness and Eight Harness satin weave CMCs, respectively, along with the definitions of the corresponding spatial geometric

parameters used to construct the meshes. (c) A blow-up of the element set containing the finite elements closest to the individual

chosen matrix voids in the unit-cell. (d) Section of the central matrix void showing the region of stress concentration. The thick solid

circle represents the location at which the stresses are extracted.

Rao et al. 3

 at UNIV OF MARYLAND BALTIMORE CO on November 17, 2016jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


the same. Therefore, the bundle and inter-bundle
matrix materials are modeled as isotropic with elastic
modulus Em and Poisson’s ratio �m, respectively.
Finally, the bundle coating is also modeled as an
isotropic medium with elastic modulus Ebc and
Poisson’s ratio �bc.

Effective thermal properties of the fiber tows were
computed with the aid of the study presented by
Chamis.22 In Chamis,22 the author derived closed-
form expressions for the effective longitudinal (�L)
and transverse (�T) CTEs of an unidirectionally rein-
forced composite lamina with transversely isotropic
fibers embedded in an isotropic matrix. Transversely
isotropic fibers could be modeled with � f

L and � f
T repre-

senting the fiber longitudinal and transverse CTE,
respectively. Similarly, the isotropic matrix material
could be modeled with �m representing coefficient of

thermal expansion. Then, based on simple force
balance, the effective longitudinal and transverse
CTEs of the lamina are given by:22

�L ¼
cf �

f
LE

f
L þ cm�mEm

E‘L

�T ¼ �
f
T

ffiffiffiffi
cf
p
þ 1�

ffiffiffiffi
cf
p� �

1þ cf�m
Ef
L

E‘L

 !
�m

ð1Þ

where

E‘L ¼ cfE
f
L þ cmEm ð2Þ

In Equations (1) and (2), E‘L represents the rule-
of-mixtures effective longitudinal elastic modulus of
the lamina and cf and cm are the volume fractions

Table 1. The input geometry parameters, physical and micro-structural material properties of the C/SiC

woven CMCs modeled in this study

Panel A: Normalized micro-structural input geometry parameters

PW geometry Satin weave geometry

â ¼ 1:0 â ¼ 1:0

b̂ ¼ 0:1 âi ¼ 0:25, 0:2, 0:125

ĝ ¼ 0:15 b̂ ¼ 0:1 âi

t̂ ¼ 0:04 ĝ ¼ 0:15 âi

ĥ ¼ 2:0 b̂ t̂ ¼ 0:04 âi

ĥ ¼ 2:0 b̂

Panel B: Normalized micro-structural input material parameters17

Fiber Fiber coating Matrix Bundle coating Volume fractions

�f =b ¼ 0:75

�fc=b ¼ 0:05

Êf ¼ 0:8 Êfc ¼ 0:125 Êm ¼ 1:0 Êbc ¼ 0:25 �bm=b ¼ 0:14

�f ¼ 0:43 �fc ¼ 0:25 �m ¼ 0:3 �bc ¼ 0:25 �bc=b ¼ 0:05

âf ¼ 0:3 âfc ¼ 1:0 âm ¼ 1:0 âbc ¼ 1:0 �bp=b ¼ 0:01

�m=m ¼ 0:9

�mp=m ¼ 0:1

Panel C: Physical properties of the PW C/SiC systems17

Entity Description

Fiber Toray T-300 1K tow carbon fiber

Matrix SiC

Tensile strength 300–400 MPa

Fiber content 40% by volume

Process Chemical vapor infiltration (CVI)

Modulus Not available

Composite PL 80 MPa (tensile)
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of the fiber and matrix phases, respectively. The
elastic moduli and Poisson’s ratios entering into
Equations (1) and (2) were described above.
We employ Equation (1) in the four-step homogeniza-
tion procedure developed by Kuhn and
Charalambides23 to determine the effective longitudinal
and transverse CTEs of the fiber tows.

During each step of the homogenization procedure,
appropriate magnitudes for cf and cm are substituted in
Equations (1) and (2) consistent with.23 Additionally,
the elastic and thermal properties appearing in
Equations (1) and (2) are set equal to the corresponding
magnitudes of individual material micro-constituents
considered in each step of the homogenization
procedure. These normalized input microstructural
material properties are reported in Table 1(Panel B).
The ‘hat’ (^) notation in Table 1(Panel B) correspond-
ing to a modulus signifies that the property has been
normalized with respect to the matrix elastic modulus
Em, whereas the ‘hat’ (^) notation for a CTE value
implies that it has been normalized with respect to the
matrix CTE �m.

Of particular interest is the homogenization of the
porous bundle and inter-bundle matrix phases. Since
porosity assumes the same CTE as that of the
surrounding medium, the effective CTE of the effective
isotropic bundle matrix is computed with the aid of a
simple rule-of-mixtures approach. In particular,
we have

�
bm
¼

cf �fEf þ cm�mEm

E‘L
ð3Þ

where E‘L is given by Equation (2) and Ef and Em

symbolically represent the elastic moduli of the fiber
and matrix phases, respectively. Further, in
Equation (3), �f and �m represent the CTEs of the
fiber and matrix phases, respectively. In the above
formulation, we consider the micro-voids in the
bundle matrix to represent the ‘fibers’. As such, substi-
tuting appropriate magnitudes for cf and cm consistent
with Kunn and Charalambides23 and recognizing that
porosity has a zero elastic modulus, the expression for
the effective CTE of the bundle matrix reduces to
�
bm
¼ �m. Using a similar argument, it could be

shown that the effective CTE of the inter-bundle
matrix phase is given by �m ¼ �m.

The volume fractions of the micro-constituents in
Table 1(Panel B) are listed with respect to the volume
occupied by the bundles and inter-bundle matrix within
the repeating unit-cells of the woven CMCs. For exam-
ple, the notation vf/b in Table 1(Panel B) implies the
volume fraction of the fibers within the fiber
bundles in the repeating unit-cells, whereas the notation

vm/m indicates the volume fraction of the matrix within
the inter-bundle matrix. Note that the term inter-
bundle matrix here means the material phase that
includes matrix as well as porosity occupying the
region between bundles not including the large scale
matrix voids.

The volume fractions and constituent properties
listed in Table 1(Panel B) are used in the above-
mentioned four-step homogenization procedure to
compute the effective thermo-elastic properties of the
orthotropic fiber bundles in the principal material
directions (PMDs). The homogenized material proper-
ties of the inter-bundle matrix phase upon accounting
for the dispersed porosity are employed to compute the
material properties of the effective matrix. As such, the
‘Effective Tow’ and ‘Effective Matrix’ columns in
Table 2 list the results of the homogenization proce-
dure. The volume fractions of the tows, matrix and
large-scale matrix voids computed with the aid of
geometry surface functions20 are listed under ‘Overall
Volume Fractions’ in Table 2. The effective elastic
properties of the woven CMCs computed with the aid
of 3D finite element macro-level unit-strain boundary
value problems21,23,24 are listed under the heading
‘Undamaged Unit-Cell’ in Table 2.

Table 2. The output meso- and macroscopic material proper-

ties of the PW and 5HS satin weave C/SiC CMCs modeled in this

study

Effective tow

Effective

matrix

Overall

volume

fractions

Undamaged

unit-cell

Panel A: PW meso- and macroscopic outputs

Ê11 ¼ 0:752

Ê‘22 ¼ 0:636

Ĝ12 ¼ 0:239 Ê �m ¼ 0:810 �fill ¼ 0:271 Êxx ¼ 0:606

Ĝ‘23 ¼ 0:230 Ĝ �m ¼ 0:288 �warp ¼ 0:271 Êyy ¼ 0:606

�12 ¼ 0:397 � �m ¼ 0:314 �matrix ¼ 0:316 �xy ¼ 0:324

�‘23 ¼ 0:379 â �m ¼ 1:0 �void ¼ 0:142 �yx ¼ 0:324

â11 ¼ 0:454 Ĝxy ¼ 0:217

â22 ¼ 0:229

Panel B: Five Harness satin weave meso and macroscopic outputs

Ê11 ¼ 0:752

Ê‘22 ¼ 0:636

Ĝ12 ¼ 0:239 Ê �m ¼ 0:810 �fill ¼ 0:271 Êxx ¼ 0:644

Ĝ‘23 ¼ 0:230 Ĝ �m ¼ 0:288 �warp ¼ 0:271 Êyy ¼ 0:644

�12 ¼ 0:397 � �m ¼ 0:314 �matrix ¼ 0:391 �xy ¼ 0:310

�‘23 ¼ 0:379 â �m ¼ 1:0 �void ¼ 0:067 �yx ¼ 0:310

â11 ¼ 0:454 Ĝxy ¼ 0:233

â22 ¼ 0:229
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Model formulation – combined
mechanical and thermal effects

Total stress function

The application of in-plane mechanical loads is conve-
niently represented in this study via the macroscopic
stresses �1xx, �

1
yy , and �

1
xy or via the spherical loading

parameters, !, �, and S, as shown in Figure 3. The
remotely applied in-plane mechanical loads can be
related to the spherical loading parameters as follows:

�1xx ¼ S cos� cos!

�1yy ¼ S cos� sin!

�1xy ¼ S sin�

ð4Þ

where S represents the combined mechanical loading
stress magnitude and � and ! represent the loading
phase angles. For example, when S is nonzero and
�¼!¼ 0, the loading case collapses to the X-direction
uniaxial tension case. The S 6¼ 0 and �¼ 90� case repre-
sents in-plane pure shear loading.

It has been shown in previous studies18,25 that the
total stress induced in the woven CMC scales
linearly with the remotely applied loads. Let �xij be the
ij-component of the stress tensor induced due to uniax-
ial tension along the global X-direction and �yij be the
ij-component of the stress tensor induced due to

uniaxial tension along the global Y-direction.
Similarly, we set �xyij to be the induced ij-component
of the stress tensor due to pure remote in-plane shear
loading and �thij to be the induced ij-component of the
stress tensor due to free thermal expansion. Based
on the principle of linear superposition, the total
ij-component of the stress tensor is given by:

�totalij ¼ �xij þ �
y
ij þ �

xy
ij þ �

th
ij ð5Þ

Each of the individual stress components on the right-
hand side of Equation (5) can be related to the remotely
applied mechanical or thermal load as follows:

�xij ¼ �̂
x
ij�

x
c

�yij ¼ �̂
y
ij�

y
c

�xyij ¼ �̂
xy
ij �

xy
c

�thij ¼ �̂
th
ij �

th
c

ð6Þ

where �xc , �
y
c , �

xy
c , and �thc are the characteristic stresses

associated with their respective nondimensional finite
element boundary value problems considered in this
study. More specifically, the subscript ‘c’ is used to
denote that the related stress is a characteristic stress
whereas the superscript denotes the associated direction
of remote loading. Thus, �xc denotes the characteristic
stress associated with remote tension in the X-direction.
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Figure 3. A schematic of the mechanical loading space showing the spherical loading parameters !, �, and S.
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As discussed elsewhere,21 and since the boundary value
problems used in deriving the stress profiles reported
herein were formulated as displacement control
problems, the above characteristic stresses are then
expressed in terms of the applied remote stress �1xx,
�1yy , �

1
xy, and thermal stress �1th ¼ Ec�c�Tc as follows:

�xc ¼ �
1
xx=Êxx

�yc ¼ �
1
yy=Êyy

�xyc ¼ �
1
xy=Ĝxy

�thc ¼ �
1
th ¼ Ec�c�Tc

ð7Þ

with Êxx, Êyy being the effective elastic moduli in the
X- and Y-directions, respectively, and Ĝxy being the
effective modulus of the systems under consideration.
Also in the above equation, Ec, �c, and �Tc represent
the characteristic or reference modulus, CTE, and
temperature change.

In this study, we choose the inter-bundle matrix
material with elastic modulus Em and CTE �m as the
characteristic material phase in the woven system.
Further, the ‘hat’ (^) notation over a stress component
in Equation (6) implies that the particular component
of stress is the normalized nondimensional stress
computed from the finite element solution.
Substituting Equations (6) and (7) into Equation (5),
we have:

�totalij ¼ �̂xij
�1xx

Êxx

þ �̂yij
�1yy

Êyy

þ �̂xyij
�1xy

Ĝxy

þ �̂thij Ec�c�Tc ð8Þ

By combining Equations (4) and (8), the combined total
stress due to the simultaneous application of axial load-
ing in the X-, Y-, and XY-directions along with thermal
loading takes the form:

�totalij ¼ S
Em

Exx

� �
cos� cos! �̂xij þ S

Em

Eyy

� �
cos� sin! �̂yij

þ S
Em

Gxy

� �
sin� �̂xyij þ Ec�c�Tc�̂

th
ij ð9Þ

where Em is the elastic modulus of the matrix material
and Exx, Eyy, and Gxy the elastic and shear moduli of
the particular woven system. Normalizing Equation (9)
with respect to the remotely applied mechanical stress
S, we get:

�totalij ¼ S
1

Êxx

� �
cos� cos! �̂xij þ

1

Êyy

 !
cos� sin! �̂yij

"

þ
1

Ĝxy

 !
sin��̂xyij þ ��̂

th
ij

#
ð10Þ

where

Êxx ¼
Exx

Em

Êyy ¼
Eyy

Em

Ĝxy ¼
Gxy

Em

ð11Þ

and

� ¼
Ec�c�Tc

S
ð12Þ

is defined as the loading proportionality constant,
which measures the ratio of the applied thermal and
mechanical loads. Consequently, a very advantageous
functional relationship for the total induced stress has
been achieved which can be written as:

�totalij ¼ S�̂total
ij �,!,�, �̂xij , �̂

y
ij, �̂

xy
ij , �̂

th
ij

� �
ð13Þ

In Equation (13), �̂total
ij represents a nondimensional

combined total stress at any given point in the
system, which is a function of the loading parameters
� and ! and also of the induced nondimensional micro-
stresses �̂xij , �̂

y
ij, �̂

xy
ij , and �̂

th
ij . The above nondimensional

micro-stresses are obtained via independent 3D finite
element solutions of the fundamental boundary value
problems aimed at assessing the linear thermo-elastic
behavior of the woven morphologies considered in
this study. Consistent with the formulation of
Equation (13), the individual stress components near
the vicinity of large matrix voids shown in Figures 1
and 2 are given by:

�totalxx ¼ S�̂total
xx �,!,�, �̂xxx, �̂

y
xx, �̂

xy
xx, �̂

th
xx

� �
�totalyy ¼ S�̂total

yy �,!,�, �̂xyy, �̂
y
yy, �̂

xy
yy , �̂

th
yy

� �
�totalzz ¼ S�̂total

zz �,!,�, �̂xzz, �̂
y
zz, �̂

xy
zz , �̂

th
zz

� �
�totalxy ¼ S�̂total

xy �,!,�, �̂xxy, �̂
y
xy, �̂

xy
xy , �̂

th
xy

� �
�totalxz ¼ S�̂total

xz �,!,�, �̂xxz, �̂
y
xz, �̂

xy
xz , �̂

th
xz

� �
�totalyz ¼ S�̂total

yz �,!,�, �̂xyz, �̂
y
yz, �̂

xy
yz , �̂

th
yz

� �

ð14Þ

Matrix cracking initiation: maximum normal
stress criterion

According to the normal stress criterion, a given mate-
rial fails when the maximum normal stress at a point in
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the system reaches the ultimate tensile strength of the
material. We can then write:

�p1 ¼ �mf ð15Þ

Herein, matrix cracking is assumed to initiate in the
isotropic pure CVI SiC matrix regions located between
the 0�- and 90�-oriented tows consistent with
Morscher.12 As such, the maximum normal stress cri-
terion is directly applicable, based on the micro-stress
distributions in the above regions. In particular, �p1
above, is the maximum normal stress in the CVI SiC
matrix, whereas �mf is the failure stress of in situ CVI
SiC estimated to be in the range 300–400MPa. We can
obtain �p1 as the biggest eigenvalue of the characteristic
equation formed with the stress tensor given by �tij.
In other words, we solve the characteristic equation:

�tij � �	ij

			 			 ¼ 0 ð16Þ

where 	ij is the Kronecker delta taking on a value of 1 if
i¼ j and 0 if i 6¼ j. The stress tensor �tij is symmetric with
real elements and represents the total induced stress in
the vicinity of the matrix voids due to the combined
application of each individual in-plane mechanical
loading case superimposed with thermal loading as
governed by each unique value of �. For a given
stress state, Equation (16) yields a cubic characteristic
equation for the eigenvalues �i, i¼ 1, 2, 3. When written
in terms of the stress tensor invariants, Equation (16)
takes the form:

��3 þ It�
2 � IIt�þ IIIt ¼ 0 ð17Þ

where the stress tensor invariants It, IIt, and IIIt are
given by:

It ¼ �
t
xx þ �

t
yy þ �

t
zz

IIt ¼ �
t
xx�

t
yy þ �

t
yy�

t
zz þ �

t
zz�

t
xx � ð�

t
xyÞ

2
� ð�txzÞ

2
� ð�tyzÞ

2

IIIt ¼ detð�tijÞ ð18Þ

The maximum normal stress �p1 is computed as the
biggest root of Equation (17). In terms of the nondi-
mensional matrix micro-stresses �total

ij given by
Equation (13) and the in-plane mechanical loading
magnitude S, the maximum normal stress �p1 could
be written as:

�p1 ¼ S�̂1 �̂total
ij

� �
ð19Þ

where �̂total
ij are the nondimensional matrix micro-

stresses due to the combined action of in-plane

mechanical loads �1xx, �
1
yy , and �

1
xy along with a thermal

load resulting from a unit change of the characteristic
temperature difference �Tc. Also in Equation (19), �̂1 is
the largest nondimensional eigenvalue computed from
the cubic characteristic Equation (17) formulated with
the stress tensor given by �̂total

ij . Normalizing Equation
(19) with the proportional mechanical load S and
invoking the normal stress criterion Equation (15),
we derive the functional form of matrix failure �1

given by:

�mf

S
¼ �1 !,�,�, �̂

x
ij , �̂

y
ij, �̂

xy
ij , �̂

th
ij

� �
ð20Þ

Parametric studies presented in the following section
of this study, help as to explore the effect of !, �, and
� on �1.

Results

In this section, we will discuss, in detail, the nature of
induced micro-stresses in the vicinity of large-scale
macroscopic voids in PW and Five Harness satin
weave CVI C/SiC CMCs. In addition, the computed
profiles of the matrix failure function developed in the
previous section and the associated matrix failure loci
are also discussed.

As shown in Figure 1, the geometry of the macro-
scopic voids chosen for stress averaging in this study is
morphologically similar in the PW and Four Harness
satin weave systems. On the other hand, the geometry
of the macroscopic void identified for stress averaging
in the Five Harness satin weave morphology is similar
to that in the Eight Harness satin weave system. Based
on the above similarities, in studies reported else-
where,21 it was shown that, while the magnitudes of
the micro-stresses, failure functions �1 and predicted
failure loci as functions of !, �, and � are different in
the Four Harness and Eight Harness satin weave CVI
C/SiC CMCs, their overall functional profiles remain
comparable with the PW and Five Harness satin weave
morphologies, respectively. Consequently, particular
discussions regarding the nature of the micro-stresses,
matrix failure functions, and matrix failure loci in the
Four Harness and Eight Harness satin weave CVI
C/SiC CMCs will not be reported herein, but could
be found elsewhere.21

Matrix micro-stress profiles

In this study, four different woven CMCs namely, PW,
Four Harness, Five Harness, and Eight Harness CVI
C/SiC satin weaves were analyzed for their individual
PL strengths under the action of combined mechanical
and thermal loading. Each of these woven CMCs
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presents a different fiber bundle architecture which
greatly influences the requisite stress fields. While
performing extensive parametric studies, it was
observed that the magnitude of the induced stress is
not only a function of the constituent material proper-
ties but is also dictated by the fiber undulation within
the unit-cell.

In studies reported by Haan,17 it was shown that the
woven system reaches its PL strength upon the initia-
tion of matrix cracking. In Haan17 and in Kuhn et al.18

a progressive stress-induced micro-cracking damage
model is employed to study the stress-induced damage
evolution in PW CMC systems. Those studies clearly
showed that upon initiation of micro-cracking damage
at sites of stress concentration, the apparent stress–
strain curve exhibits its first deviation from linearity.
The study also showed that the ‘knee’ of the apparent
stress–strain curve becomes more pronounced in
systems capable of higher saturation damage densities.
In light of the above, the linear fields are employed in
this study to identify the end of the linear regime which
we define as the PL.

Further, in Haan17 it was also reported that the most
likely site of initiation of matrix cracking is situated
around the vicinity of large matrix voids within the
domain of the woven unit-cell. For the PW CMC,
there is only one large central matrix void which is
the site of high-stress concentrations as shown in
Figure 1. However, in satin weave CMCs such as the
Four, Five, and Eight Harness woven architectures,
there are many such discrete matrix voids, all of
which act as sites of high-stress concentration. Of the
above sites, the matrix void around which the absolute
maximum concentration of stress occurs is considered
to be the likeliest location for the initiation of first
matrix cracking.

In the case of the satin weave morphologies, the
highest stress concentrations occur near the vicinity of
large matrix voids which are in close proximity to the
out-of-plane undulations of fiber tows.21 Based on this
knowledge, the locations of matrix voids where stresses
were extracted pursuant to the solution of each bound-
ary value problem over the repeating unit-cells of the
Four Harness, Five Harness, and Eight Harness satin
weave CMCs are presented in Figures 1(b), 2(a) and
(b), respectively.

While computing failure loci for the woven CMCs
modeled in this study, we employ averaged stresses near
the hole region calculated via detailed 3D finite element
solutions. In order to accurately capture the effect of
high-stress gradients near the vicinity of matrix voids,
stresses are computed at all integration points in all the
elements forming the wall of the matrix voids, as shown
in Figures 1(c) and 2(c). The average stresses in the void
wall are then calculated by first computing the stress at

the center of each finite element belonging to the free
surface adjacent to the void and then averaging the
stresses in the z-direction, in the finite elements at the
same angular distance 
 relative to the reference
x-direction, as shown in Figures 4–9.

Matrix micro-stresses in woven CVI C/SiC CMCs

The profiles of the average micro-stresses computed as
discussed above, for the PW and Five Harness satin
weave morphologies are presented in Figures 4 and 5,
respectively. As shown in the above figures, under
mechanical tension along the global X-direction, the
�̂xxx stress exhibits a maximum at 
¼�90�, which for
the PW system under consideration is approximately
3.12� (1/Êxx)¼ 5.15 times the remotely applied
mechanical stress �1xx. Similarly, the results in
Figure 5(a) indicate that in the Five Harness satin
weave C/SiC CMC under consideration, the
maximum induced �xxx stress is of the order of about
2.5� (1/Êxx)¼ 3.9 times the remotely applied mechan-
ical load. The normalized effective elastic moduli Êxx

for the PW and Five Harness satin weave C/SiC
systems studied herein are listed in Table 2, respec-
tively. These profiles suggest that stress concentrations
occur in the void along planes orthogonal to the direc-
tion of the applied loading.

The profiles for the stresses resulting from mechan-
ical tension along the global Y-direction are plotted in
Figures 4(b) and 5(b) for the PW and Five Harness
satin weave CMCs, respectively. The �̂yyy stress which
is observed to dominate the stress patterns assumes
maximum values at 
¼�180� from the reference
X-axis. As expected, the results for the stress profiles
associated with mechanical tension along the global
Y-direction are identical to that obtained for mechan-
ical tension along the global X-direction except that
they are ‘out-of-phase’ by an angular phase shift
of 
¼ 90�.

The patterns of the stresses resulting from pure
remote shear loading on the C/SiC PW and Five
Harness satin weave CMCs under consideration are
shown in Figures 4(c) and 5(c), respectively. It may be
important to note that the stress profiles reported in the
above figures reflect averages along the void wall height
obtained at the centroids of the corresponding
elements, slightly away from the traction-free wall sur-
face. As such, and while the observed profiles for the
normal stresses appear to follow the expected traction-
free conditions at the void wall (immediate check can
be made at 
¼ 0� and 90�) the in-plane shear appears to
maintain a small nonzero value at the above locations.
This result is attributed to the actual location of the
element centroid at which the stresses are evaluated.
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With the above limitations in mind, we do observe
that at 
 offsets of �45�, the normal stresses acquire
maxima of the order of 0.9 with a nonzero shear of
the order of 0.7 in the PW system. The above combina-
tion of stresses may result in a maximum

principal stress which is estimated to be of the
order of 1.7� (1/Ĝxy)¼ 7.40 for the PW and
1.2� (1/Ĝxy)¼ 5.15 for the Five Harness satin weave
system. The normalized effective shear moduli Ĝxy for
the PW and Five Harness satin weave CVI C/SiC
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Figure 4. Profiles of the induced normalized matrix micro-stresses in the PW C/SiC CMC near the vicinity of the macroscopic void.

(a) Stresses due to tension along the X̂-direction (!¼ 0�, �¼ 0�). (b) Stresses due to tension along the Ŷ-direction (!¼ 90�, �¼ 0�).

(c) Stresses due to pure remote in-plane shear loading (�¼ 90�). (d) Stresses due to free thermal expansion with �̂f ¼ �f =�m¼ 0.3.
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systems under consideration are reported in Table 2,
respectively.

The stresses induced in the hole region due to free
thermal expansion of the PW and Five Harness satin

weave C/SiC CMCs are shown in Figures 4(d) and 5(d),
respectively. These stresses are driven by the fundamen-
tal mismatch in CTEs of the fibers and matrix material.
As shown in Table 2 at least for the assumed fiber and
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Figure 5. Profiles of the induced normalized matrix micro-stresses in the Five Harness C/SiC CMC near the vicinity of the

macroscopic void. (a) Stresses due to tension along the X̂-direction (!¼ 0�, �¼ 0�). (b) Stresses due to tension along the Ŷ-direction

(!¼ 90�, �¼ 0�). (c) Stresses due to pure remote in-plane shear loading (�¼ 90�). (d) Stresses due to free thermal expansion with

�̂f ¼ �f =�m¼ 0.3.

Rao et al. 11

 at UNIV OF MARYLAND BALTIMORE CO on November 17, 2016jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


matrix properties listed in Table 1, the homogenized
longitudinal and transverse CTEs of the fiber bundles
are much less than the homogenized CTE of the matrix
material. As such, the matrix has a tendency to expand
more than the fibers for the same positive temperature
change �Tc, but the fibers tend to restrain the matrix
from doing so. Consequently, the matrix is put in a
predominantly compressive stress state. The reverse
effect is expected when applying a negative temperature
change, i.e., the result of cooling during fabrication.

The fundamental nondimensional matrix micro-
stresses presented in Figures 4 and 5 bring to light the
fact that the magnitude of the normalized stresses
induced as a result of mechanical action are appreciably
more pronounced in comparison with the normalized

stresses induced due to free thermal expansion for a
unit change in temperature �Tc. Further, the out-
of-plane normalized shear stresses �̂ixz and �̂iyz are
negligible in comparison with the other components
of stress.

The total stress induced in the vicinity of the matrix
void is calculated with the aid of Equation (13) for
different values of the thermal-to-mechanical stress
ratio �. The effects of � which at least theoretically
can take on values from �1 to þ1 are explored
through extensive parametric studies. For a given mate-
rial system and under a fixed mechanical loading mag-
nitude S, the value of �measures the relative amount of
thermal loading given by �1th ¼ Ec�c�Tc. More specifi-
cally under a constant S, negative values of � capture

Figure 6. Profiles of the total normalized matrix micro-stresses in the PW C/SiC CMC near the vicinity of the macroscopic void,

due to the combined effects of mechanical tension in the X̂-direction and thermal loading; i.e., !¼�¼ 0� and �¼�3, �1, 0, þ1, þ3.

(a) �total
xx stress due to mechanical tension in the X̂-direction and thermal loading, (b) �total

yy stress due to mechanical tension in the X̂-

direction and thermal loading, (c) �total
xy stress due to mechanical tension in the X̂-direction and thermal loading, and (d) �total

zz stress due

to mechanical tension in the X̂-direction and thermal loading.
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the case of predominantly thermal loading wherein
�Tc< 0 whereas positive values of � imply pure ther-
mal loading (if S¼ 0) or predominantly thermal load-
ing with �Tc> 0.26

In Figure 6, we present the variation of stresses �totalij

where ij! xx, yy, xy, and zz for values of �¼�3, �1,
0, þ1, and þ3 for the PW CVI C/SiC CMC under
consideration. The results in Figure 6 were obtained
for uniaxial tension along the X-direction (!¼ 0� and
�¼ 0�) and thermal loading. As shown in the above
figure, with �¼�3, �̂max

xx j
¼�90� ¼ 6.4 whereas with
�¼þ3, �̂max

xx j
¼�90� ¼ 3.9, implying that stress concen-
trations increase for negative � values and vice versa.26

This result suggests that systems similar to those con-
sidered herein and characterized by �< 0 may exhibit a

lower PL stress while also exhibiting increased likeli-
hood of cracking during cooling.27

Similarly, the variations of the �totalij stresses in
the Five Harness CVI C/SiC CMC are shown in
Figure 7. As shown in the above figure, when �¼�3,
�̂totalxx j
¼�90� ¼ 4.81 whereas when �¼þ3,
�̂totalxx j
¼�90� ¼ 2.98, once again implying that stress
concentrations increase for negative � values and
vice versa.

The total stress results for uniaxial tension along the
Y-direction (!¼ 90� and �¼ 0�) and thermal loading
would be ‘out-of-phase’ by 90� with the results
presented in Figures 6 and 7. By analogy then, the
total stress results due to pure remote in-plane shear
(�¼ 90�) and thermal loading would be similar to the
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fundamental matrix micro-stresses due to pure remote
in-plane shear.

Overall, the findings regarding the stress fields in
woven CMCs considered herein, are consistent with
previous research efforts.17,18 In both works cited

above, it was shown that narrow damage bands begin
to emanate from the vicinity of macroscopic voids in
woven CMCs. These damage sites were also shown to
be the most likely locations of initiation of cracking in
the matrix material, as also predicted in this study.
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Figure 8. Failure function for PW C/SiC CMC based on the normal stress criterion. Combined effects of remote in-plane

mechanical and thermal loading as computed with �¼�3, �1, 0, þ1, þ3 and �̂f ¼ 0.3. (a) Mechanical tension along the X̂-direction

(!¼ 0�) and increasing amounts of remote in-plane shear (�¼ 0�, �¼ 45�, �¼ 90�). (b) Biaxial tension �1xx ¼ �
1
yy (!¼ 45�) and

increasing amounts of remote in-plane shear (�¼ 0�, �¼ 45�, �¼ 90�).
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1
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Matrix failure functions for woven CVI C/SiC CMCs

The effects of !, �, and � on the failure function �1 for
the PW and Five Harness C/SiC CMCs are reported in
Figures 8 and 9, respectively. In both the above figures,
the left column of plots represents the profiles of �1 as
computed for uniaxial tension along the X-direction
(�¼ 0� and !¼ 0�) and different thermal loading
conditions along with increasing amounts of pure
remote in-plane shear load (�¼ 0�, �¼ 45�, �¼ 90�).
On the other hand, the right column of plots shown
in Figures 8 and 9 reports on the profiles of �1 due
to biaxial tension (�1xx ¼ �

1
yy since !¼ 45�) and the

above-mentioned thermal and additional in-plane
shear loads. To be consistent with the results presented
for �̂totalij in Figures 6 and 7, we present here results
obtained for �1 with �¼�3, �1, 0, þ1, and þ3.
As expected, the failure function takes on maximum
values as for �< 0 regardless of the value of either
! or �. As seen from Figures 8(a) and (b) and 9(a)
and (b), for individual levels of �, the magnitudes of
the failure function �1 increases along with the relative
amount of in-plane shear loading as measured via the
parameter �. This behavior suggests that the matrix is
more susceptible to cracking under the action of
combined in-plane mechanical shear and thermal
loading in comparison with remote in-plane
mechanical tension and thermal loading.

Also as evident from Figures 8(a) and 9(a), the fail-
ure function �1 attains maximum values at 
¼�90�

from the reference x-axis. This remains true for uniaxial
tension along the X-direction (!¼ 0�) combined with
thermal loading conditions as computed through the
parameter � and in the absence of any remote
in-plane mechanical shear load (�¼ 0�). However,
with increasing amounts of in-plane shear coupled
with uniaxial tension along the X-direction and thermal
loading, the angular positions of the maxima and
minima exhibited by �1 shift to the right as indicated
by the dotted vertical lines through the left column of
plots in Figures 8(a) and 9(a). This result implies that
the likely location of matrix crack initiation shifts to the
right as the relative amount of remote in-plane shear
load increases.

The profiles of �1 under the combined action of
remote biaxial tension (�1xx ¼ �

1
yy since !¼ 45�) and

increasing amounts of in-plane shear load and changing
thermal environment as measured via the parameter �
are presented in Figures 8(b) and 9(b), which clearly
indicate the absence of any ‘phase shift’ as witnessed
in Figures 8(a) and 9(a). These profiles of �1 suggest
that failure is most likely to initiate at ‘equatorial’ void
planes regardless of the value of either ! or �.

However, in the Five Harness woven system, �1

exhibits maxima corresponding to 
 < 0, consistent

with the total stress results in Figure 7. As such, it is
likely that matrix cracking in the Five Harness CMC
might first initiate in the ‘equatorial’ plane of the matrix
void in the region 
 < 0 regardless of the combined
values of !, � and �.

Estimates of PL strength. The above-mentioned fail-
ure function could be employed to obtain independent
estimates of the PL strengths of woven CVI C/SiC
CMCs under different loading conditions which is
given by,

S ¼
�mf

�max
1 ð�Þ

ð21Þ

In Equation (21), �mf is the CVI SiC matrix failure
stress and �max

1 ð�Þ is determined from the results
reported in Figure 8. The results in Table 3 list the
predicted PL strengths for the PW CVI C/SiC CMC
system under consideration under uni-axial, bi-axial,
pure shear, and general planar loads in the absence of
thermal loading (�¼ 0). Similarly, using Equation (21),
independent estimates of the PL strengths of the Five
Harness satin weave CVI C/SiC CMCs studied herein
could be obtained, as illustrated in Table 4.

The above results indicate that the PL strength of
C/SiC CMCs depends on the weave architecture of the
reinforcing fibers. Studies by Morscher et al.,12,28,29

Camus et al.,27 and Holmes,30 confirm the above obser-
vation and also indicate the strong dependence of the
PL strength on micro-constituent content. Therefore, it
becomes difficult to exhaustively corroborate the PL
strength results for the model CVI C/SiC systems con-
sidered herein. However, consistent with Morsher,12

systems with higher undamaged elastic modulus are
reported to be characterized by a higher PL strength,
as shown in Tables 3 and 4.

Furthermore, as seen from Tables 3 and 4, the
predicted biaxial strength is greater than the uniaxial
strength for the PW and 5HS woven C/SiC CMCs. In a
system wherein stress concentrates around holes/voids,
this study, in tandem with classical elasticity suggests
that due to remote tension in say, the X-direction, a
stress concentration factor dominates the �xx stress at
the equatorial plane perpendicular to the axis of load-
ing. On the other hand, a compressive �yy stress devel-
ops at the poles relative to the loading axis. As such, the
application of a second remote stress perpendicular to
the first, in this case �yy, will have a stress relief effect at
the equatorial points. Thus, higher applied stresses are
required for failure in the latter case as indeed is
predicted by this model. The stress profiles shown in
Figures 4 and 5 can be used for further clarification
of this point.

16 Journal of Composite Materials 0(0)

 at UNIV OF MARYLAND BALTIMORE CO on November 17, 2016jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


Table 3. Comparison of predicted and experimentally established first matrix cracking stress values of PW

C/SiC CMC under different loading conditions. These results were obtained assuming the tensile strength of CVI

SiC matrix �mf as 400 MPa

Uniaxial tension Biaxial tension Pure shear General loading

(!¼ 0�, �¼ 0�) (!¼ 45�, �¼ 0�) (!¼ 0�, �¼ 90�) (!¼ 45�, �¼ 45�)

Applied stress �1xx ¼ S �1xx ¼ S=
ffiffiffi
2
p

�1xy ¼ S �1xx ¼ S=2

�1yy ¼ S=
ffiffiffi
2
p

�1yy ¼ S=2

�1xy ¼ S=
ffiffiffi
2
p

�1ij �¼ 0 �¼ 0 �¼ 0 �¼ 0

Maximum normal

stress criterion 5.14 2.85 6.68 6.52

�1¼ �mf/S

CVI SiC

tensile strength 400 400 400 400

�mf

Matrix S1¼ 77.82 S1¼ 140.35 S1¼ 59.88 S1¼ 61.35

cracking �1xx ¼ 77.82 �1xx ¼ 99.24 �1xx ¼ 30.67

stress (MPa) �1yy ¼ 99.24 �1yy ¼ 30.67

S1¼ �mf/�1 �1xy ¼ 59.88 �1xy ¼ 43.38

Reported data (MPa) 80 (Haan17) NA NA NA

S1¼ �mf /�1

Table 4. Predicted first matrix cracking stress of Five Harness C/SiC CMC under different loading conditions.

These results were obtained assuming the tensile strength of CVI SiC matrix �mf as 400 MPa

Uniaxial tension Biaxial tension Pure shear General loading

(!¼ 0�, �¼ 0�) (!¼ 45�, �¼ 0�) (!¼ 0�, �¼ 90�) (!¼ 45�, �¼ 45�)

Applied stress �1xx ¼ S �1xx ¼ S=
ffiffiffi
2
p

�1xy ¼ S �1xx ¼ S=2

�1yy ¼ S=
ffiffiffi
2
p

�1yy ¼ S=2

�1xy ¼ S=
ffiffiffi
2
p

�1ij �¼ 0 �¼ 0 �¼ 0 �¼ 0

Maximum normal

stress criterion 3.9 2.3 5.12 5.12

�1¼ �mf /S

CVI SiC

tensile strength 400 400 400 400

�mf

Matrix S1¼ 102.56 S1¼ 173.91 S1¼ 78.125 S1¼ 78.125

cracking �1xx ¼ 102.56 �1xx ¼ 122.97 �1xx ¼ 39.06

stress (MPa) �1yy ¼ 122.97 �1yy ¼ 39.06

S1¼ �mf /�1 �1xy ¼ 78.125 �1xy ¼ 55.24

Reported data (MPa) NA NA NA NA

S1¼ �mf /�1
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Matrix failure loci for woven CVI C/SiC CMCs

In order to further understand the effects of applied
mechanical and thermal loads on the matrix cracking
failure stress, matrix failure loci for the current woven
C/SiC CMCs are developed. The proportional loading
vector S ¼ �1xxîþ �

1
yy ĵþ �

1
xyk̂ was employed along with

the loading proportionality constant � to develop
profiles of the failure function �1, as discussed in the
previous section. The maxima �max

1 ð�Þ exhibited by �1

discussed above were used to develop failure envelops
or loci in the normalized �̂1xx � �̂

1
xy space for different

combinations of ! and �. Therefore, for a given remo-
tely applied mechanical load controlled by the spherical
loading parameters ! and �, the matrix would fail in
accordance with the normal stress criterion if:

�1xx
�mf

4
cos�cos!

�max
1 ð�Þ

�1xy
�mf

4
sin�

�max
1 ð�Þ

ð22Þ

where �max
1 ð�Þ implies that the maxima exhibited by

�1 is a function of the loading proportionality
constant �.

Figures 10(a) and 11(a) show the predicted failure
loci for the PW and Five Harness satin weave C/SiC
systems under the combined action of remote in-plane
mechanical tension along the X-direction and thermal
loading as measured via the parameter �, respectively.
In Figure 10(b–d), we show predicted failure loci for the
PW C/SiC CMC under changing thermal environment
and increasing amounts of remote biaxial tension
!¼ 15�, !¼ 30�, and !¼ 45�, respectively. Similarly,
Figure 11(b–d) shows the predicted failure loci for the
Five Harness C/SiC CMC under changing thermal
environment and increasing amounts of remote biaxial
tension !¼ 15�, !¼ 30�, and !¼ 45�, respectively.

The results presented in Figure 10 suggest that under
mechanical loads (i.e. �¼ 0), the failure locus intersects
the x-axis at a distance equal to approximately 1.25
times the y-axis intercept. This suggests that first
matrix cracking may initiate more readily under pure
shear compared to pure tension loading.

The above effect is somewhat lesser in systems with
residual thermal stresses with negative values of the
� loading parameter. At the same time, in systems
with positive � values, this effect is amplified consider-
ably resulting in failure loci which are more elongated
along the �1xx-axis of loading, as shown in Figure 10.
The above observation derived from the failure loci
results reported in Figure 10 suggest that first matrix
cracking may initiate more readily under the combined
effects of remote mechanical shear and thermal loading

compared to the combined effects of remote mechanical
tension and thermal loading.

For a given combination of ! and �, as �! 0�:

�totalij ! S
1

Êxx

� �
cos!�̂xij þ

1

Êyy

 !
sin!�̂yij þ ��̂

th
ij

" #

ð23Þ

On the other hand, when �! 90�:

�totalij ! S
1

Ĝxy

 !
�̂xyij þ ��̂

th
ij

" #
ð24Þ

The failure loci results reported in Figure 10 depend
on the maxima �max

1 ð�Þ (Equation (22)) exhibited by
the failure function �1, which in turn are a function
of the total induced stress as derived in Equation
(20). Furthermore, the relative magnitudes of
�̂xij and �̂yij are far greater than �̂xyij and �̂thij , as
shown in Figure 4. For negative � values
(i.e. �Tc< 0) and 0��� 90�, the maxima �max

1 ð�Þ
progressively increases, as shown in Figure 8.
However, since Êxx and Êyy are greater than Ĝxy

(Table 2) j�max
1 ð�Þj�!0� 5 j�

max
1 ð�Þj�!90� , consistent

with Equations (23) and (24). Therefore, the failure
loci shrink for negative � values and the combination
of pure remote shear and thermal loads becomes more
detrimental than the combination of pure remote
tension and thermal loads. The opposite effects would
be expected for positive � values, resulting in the elon-
gated failure loci shown in Figure 10. In general, the
woven CVI C/SiC composite systems are susceptible to
cracking during cooling from the curing to the room
temperatures, i.e., for �T< 0 and consequently �< 0,
as also reported in Camus et al.27

Further, the results in Figure 10 indicate that for
negative � values, matrix cracking is predicted to initi-
ate at lower remotely applied mechanical loads. This
result implies that at higher temperature changes
(�Tc< 0), the apparent PL strength of the PW C/SiC
CMC decreases apparently due to increased tensile
thermal stresses in the matrix phase induced by the
large mismatch in the CTEs of the fibers and matrix
material. These characteristics give rise to elliptical fail-
ure loci shown in Figure 10 for any given combination
of ! and �. The observations made above are consistent
with the results reported for the failure function �1 in
Figure 8 and also the fundamental micro-stresses
presented in Figure 4 and the total induced stress pro-
files presented in Figure 6.

The tensile PL strength of the PW C/SiC CMC
reported in Table 1(Panel C), when normalized with
respect to the CVI SiC matrix failure stress of
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�mf¼ 300–400MPa, and superimposed on the failure
loci, results in the three discrete failure points shown
in Figure 10(a). As such, within the context of the
above-estimated �mf, model predictions completely
envelop experimental data.

As could be inferred from Figure 11, the matrix
cracking failure loci of the Five Harness C/SiC compo-
site system are comparable, at least qualitatively, to
those of the PW C/SiC system. However, note that
for the same change in temperature �T, the results in
Figure 11 indicate that tensile and shear loads of
greater magnitudes are required for matrix cracking
to initiate in the Five Harness C/SiC CMC than the
PW CMC system. This result is consistent with the

finding that the magnitude of the stress concentration
factor as measured via the parameter �max

1 ð�Þ in
Figures 8 and 9 is lesser in the Five Harness CMC
than in the PW CMC, for any given combination of
!, �, and �.

Discussion

This study focused on evaluating the failure behavior of
complex woven plain and satin weave C/SiC CMCs,
under the combined action of general in-plane mechan-
ical loads and thermal environments resulting from
changes in temperature �T. During the cooling of
CMCs from the stress-free processing to room
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Figure 10 Matrix failure loci for the PW C/SiC CMC based on the normal stress criterion, computed under the combined action of

in-plane mechanical loads and changing thermal environment as measured via �¼�3, �2, �1, 0, þ1, þ2, þ3. (a) Uniaxial tension

along the X̂-direction (�¼ 0� and !¼ 0�). (b) Combined mechanical tension along the X̂- and Ŷ-directions (�¼ 0� and !¼ 15�). (c)

Combined mechanical tension along the X̂- and Ŷ-directions (�¼ 0� and !¼ 30�). (d) Biaxial tension �1xx ¼ �
1
yy (�¼ 0� and !¼ 45�).
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temperatures, the matrix material shrinks differentially
from the reinforced fiber tows giving rise to thermal
residual stresses as well as dispersed micro-porosity
and large-scale voids. Although Chapman and
Whitcomb31 have advocated that modeling these
large-scale pores could be computationally expensive,
it has been clearly shown in previous studies17,18 that
these large matrix pores are discontinuities in an other-
wise continuous medium and as such act as sites of
high-stress concentration. By computing the stresses
concentrations near the vicinity of these matrix voids
and incorporating these stresses in a failure criterion
based on maximum normal stress, matrix failure loci
aimed at assessing the first matrix cracking stress

corresponding to the PL of these woven CMCs have
been developed.

It has been reported in the study by Morscher12 on
2D woven melt-infiltrated SiC/SiC composites that
cracking of the matrix initiated outside of the load
bearing mini-composite. In fact, Morscher12 hypothe-
sized that all the matrix cracks originated in the 90� tow
regions or the large SiC–Si pure matrix regions.
It should be noted herein that the hypothesis in
Morscher12 points to the matrix-rich regions between
the 0� and 90� tows and not the 90� bundles per se.
In the current matrix cracking model it was shown
that matrix voids present in the above-mentioned
regions act as sites of high-stress concentrations,
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Figure 11. Matrix failure loci for the Five Harness C/SiC system based on the normal stress criterion, computed under the

combined action of in-plane mechanical loads and changing thermal environment as measured via �¼�3, �2, �1, 0, þ1, þ2, þ3. (a)

Uniaxial tension along the X̂-direction (�¼ 0� and !¼ 0�). (b) Combined mechanical tension along the X̂- and Ŷ-directions (�¼ 0�

and !¼ 15�). (c) Combined mechanical tension along the X̂- and Ŷ-directions (�¼ 0� and !¼ 30�). (d) Biaxial tension �1xx ¼ �
1
yy

(�¼ 0� and !¼ 45�).
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thereby forming the most likely regions of matrix crack
initiation. Furthermore, in this study, the rather arbi-
trary geometry of the processing-induced macroscopic
voids were modeled as complex geometry occupying the
space between the lower matrix layer of one ply and the
upper matrix layer of its adjacent ply, through a cylind-
rical hole.20 While further modeling may be needed to
quantify the effects of the inter-connecting hole shape
and size, the consistency of the predicted results when
compared to albeit, limited experimental data, reinforce
confidence in the modeling approach developed.

Comparison of tensile PL data of the PW C/SiC
CMC obtained from Haan17 with model predictions
as reported in Figure 10, inspires confidence in the
finite element model developed in this study.
Figure 12(a) displays the failure loci of the PW and
Four, Five, and Eight Harness C/SiC CMCs under uni-
axial mechanical tension (!¼ 0�) and in the absence of
any thermal load (�¼ 0), while Figure 12(b) reports on
the failure loci of the above woven morphologies under
severe thermal loading (�¼�3). It is evident from
Figure 12 that under a given combination of mechan-
ical and thermal loading, approximately equal amounts
of mechanical tensile loads are required to initiate
matrix cracking in pure tension in both the PW and
Four Harness Satin Weave CMCs. However, the Five
and Eight Harness satin weave C/SiC CMCs appear to
present a slightly higher resistance to matrix cracking in

pure shear as well as pure tension, under any given
mechanical and thermal loading environment.

Limitations of the thermal analysis

At typical processing temperatures of C/SiC CMCs
(1200–1500�C Trinquecoste et al.32), the longitudinal
CTE of the T300 carbon fibers is usually bounded as
1:2� 10�6=�C � � f

L � 1:9� 10�6=�C. On the other
hand, the radial (transverse) CTE of the T300 fibers
decreases from 17.6� 10�6/�C in the temperature
range 25–200�C to 1.2� 10�6/�C around 600–800�C.33

There seems to be an unavailability of the
transverse (� f

T) CTE of T300 carbon fibers beyond
800�C; as such, in this study, � f

T ¼ �
f
L ¼ �f. In particu-

lar, the CTE of the T300 carbon fibers is set as
�f¼ 1.2� 10�6/�C, while the CTE of the CVI SiC
matrix is taken to be �m¼ 4.0� 10�6/�C.
Consequently, the parametric studies reported in this
study that explore the effects of thermal loads on the
first cracking stress in woven CMCs are limited to the
case when �̂f ¼ �f=�m ¼ 0:3. As such, the failure loci
presented in this study do not fully capture the thermal
stress effects over a broad range of fiber and matrix
CTEs. Potentially, one could solve several different
thermal load boundary value problems with individual
values of � f

L and � f
T, and develop a broad array of

failure loci. Such studies, while computationally
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Figure 12. Failure loci of the PW and Four, Five, and Eight Harness Satin Weave C/SiC CMCs based on the normal stress criterion.

(a) Comparison of the failure loci under remote mechanical tension in the X̂-direction (!¼ 0� and �¼ 0�) in the absence of any

thermal load (�¼ 0). (b) Comparison of the failure loci under remote mechanical tension in the X̂-direction (!¼ 0� and �¼ 0�)

subjected to severe thermal loading (�¼�3).

Rao et al. 21

 at UNIV OF MARYLAND BALTIMORE CO on November 17, 2016jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


demanding, would yield model data that would readily
present an environment for assessing the effects of fiber
and matrix CTE mismatch.

Due to unavailability of appropriate data and the
CVI technique of matrix deposition, in these studies,
we assume that the CTE of micro-constituent phases
such as the fiber coating, bundle matrix, and bundle
coating are equal to that of the inter-bundle matrix.
This assumption presents another limitation on the
thermal analysis performed in this study. Therefore,
the complete set of results encompassing effects of ther-
mal loads would require solutions to multiple finite
element boundary value problems. In each of these
simulations, the CTEs of the micro-constituent phases
would need to be appropriately chosen to reflect actual
composite systems.

Conclusions

A robust modeling framework for the quantification of
stress concentrations around large-scale voids and their
effects on the PL strength of woven CMCs under remo-
tely applied in-plane mechanical loads and different
thermal environments has been developed. The detailed
geometry models of woven CMCs employed in this
study accurately capture the local stress distribution
around the vicinity of macroscopic matrix voids.

The stress concentrations around these matrix voids
in the PW C/SiC CMCs were shown to be 5.14 times
greater than the remotely applied mechanical loads
under uniaxial tension (!¼ 0�) and in the absence of
any thermal loads (�¼ 0). With increasing temperature
changes, the thermal stresses appear to play a greater
role most likely leading to a degradation in the appar-
ent high temperature first cracking strength of woven
CMCs.

Satin weave CMCs such as the Four, Five, and Eight
Harness morphologies pose a greater modeling chal-
lenge. However, the robust geometry models of these
woven CMCs developed in Rao et al.20 account for
high-stress concentrations near discrete matrix voids
in the weave resulting during processing. Employing
the same methodology as developed for the PW
CMCs, stress concentrations of magnitudes 4.8, 3.9,
and 3.61 were computed for the Four, Five, and
Eight Harness C/SiC CMCs, respectively, under uniax-
ial mechanical tension and in the absence of any ther-
mal loads. Further, it was also shown that in harsher
thermal environments (�< 0), the magnitude of the
computed tensile normal stress concentrations increases
with increasing cooling �T and vice versa.

Based on the results presented in the previous
sections, it could be predicted that satin weave CMCs
would require higher mechanical and thermal loads to
initiate matrix cracking than the PW CMCs, provided

the material micro-constituent properties are the same.
However, more substantive comparisons with experi-
mentally established temperature sensitive failure data
for woven CMCs are needed for model validation.
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