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ABSTRACT: The focus of this study is aimed at characterizing the weave architecture
in orthogonally woven polymer and ceramic–matrix composites. Three-dimensional
(3D) geometric models of the unit-cells of four harness (4HS), five harness (5HS), and
eight harness (8HS) satin weave morphologies are developed. The fiber bundle and
matrix architecture in the 4HS, 5HS, and 8HS morphologies is represented via
mathematical shape functions within the domain of the repeating unit-cells of the
woven fabrics. This work brings together the non-uniform layer methodology
of Kuhn and Charalambides [1] and the sub-cell modeling approach developed by
Hewitt et al. [2]. In addition, this article introduces the novel concept of a ‘middle
matrix layer’ in capturing the ingress of matrix material away from undulating bundle
regions, as documented by Morscher [3]. The geometry models developed herein
account for a porous polymer matrix deposited over the woven mat via either resin
film infusion (RFI) or resin transfer molding (RTM). This modeling also incorporates
micro-structural intricacies observed in woven CMCs fabricated using chemical vapor
infiltration (CVI) techniques for the deposition of the ceramic–matrix phase. Finally,
results on the overall volumetric composite characteristics are reported.

KEY WORDS: surface functions, geometric modeling, finite elements, discretization,
composites, fiber, bundles, unit-cell, volume fraction.

INTRODUCTION

W
OVEN FABRIC COMPOSITES are being considered as viable alternatives to monolithic
materials in a wide range of specialized applications. However, their successful use

is limited by our ability to effectively characterize their complex micro-structure and
associated macro-mechanical failure response. Thus, the development of detailed and
robust geometric models (see Ref. [1]) that capture the intricate complex micro-structural
characteristics of the woven systems is of critical importance.

Kuhn and Charalambides [1] developed a new class of mathematically piecewise
continuous shape functions in describing the geometry of fiber bundles in plain weave
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fabric composites. Formulations for the presence of large scale macroscopic voids often
observed in the matrix phase are also developed.

In studies reported elsewhere [4–7], researchers have developed geometry models to
characterize the micro-structural complexities often observed in woven fabric composites.
In Ref. [4], the methodology of describing the geometry of the woven unit cell relies
on characterizing the centerline of each fiber bundle (tow) as a Bezier curve, interpolating
a set of discrete control points and then sweeping the cross-section of the tows over this
curve, to generate a continuous tow.

Raju et al. [8] presented several two-dimensional (2D) renditions of PW, 5HS, and 8HS
satin weave composites with a view to extract the repeating unit cells (RUCs) and further
develop three-dimensional (3D) models of these RUCs. However, the level of detail
incorporated in that geometric modeling effort was rather simplistic as the fiber bundle
cross-sections were assumed to be rectangular and the bundles were assumed to undulate
only in the gap or bridge region between orthogonal fiber tows. Micrographs of the
NicalonTM fiber reinforced CVI SiC plain weave composite presented in Ref. [1] suggest
that the fiber tow path continuously undulates and that the fiber tow cross-section is more
elliptical than rectangular. In addition to the above-mentioned geometry simplification
the model developed in Ref. [8] was also limited to describing a fully dense matrix material
surrounding the fiber tows while the presence of discrete matrix voids in porous matrix
fabric composites was not addressed.

The geometric modeling methodology employed in this study is similar to that employed
by previous researchers [2,8–11]. In particular, the techniques employed herein are inspired
by the methodology developed by Hewitt et al. [2]. In that study, the authors compiled a
library of 32 sub-cells incorporating various domains of fiber bundle undulation, which
were then assembled in accordance with a weave point diagram established for each type
of weave. Hewitt et al. [2], assumed the fiber bundle cross-sections to be somewhat square
and modeled undulating profiles of the fiber tows with appreciable discontinuities.
In addition, the model presented in Ref. [2] does not incorporate the complex geometry
of the matrix material surrounding the fiber tows. This work aims at developing a robust
library of mathematical models capable of capturing the intricate details of an entire class
of satin weave systems.

The geometry modeling and characterization presented herein establish the critical
modeling framework for broad thermo-mechanical studies using the method of finite
elements. As such, the validation of FE models is not central to this study and is addressed
elsewhere [12] as well as in complementary studies now in progress. The general
methodology employed in this study shall be presented next.

AN OVERVIEW OF THE GEOMETRIC MODELING METHODOLOGY

In order to model the geometry of inherently complex material systems such as satin
weave composites, it is essential to understand the details of their intricate micro-structural
architecture. The architecture of satin woven morphologies is characterized by undulating
as well as straight non-undulating segments of the woven fiber tows, as evident
schematically in Figure 1 wherein a cross-sectional profile of a 5HS system is shown.
Similar geometric features of undulating and straight tow segments are exhibited in the
4HS and 8HS systems. Unlike the above morphologies, plain weave morphologies exhibit
continuously undulating tows as shown in Figure 2.
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Figure 2. Schematic representation of the cross-section of a plain woven laminate. (a) Identification
of the repeating unit cell (RUC). (b) Detailed view of the RUC showing the fiber tows and matrix material.
(c) The schematic representation of the symmetric part of the RUC.
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Figure 1. Schematic representation of the cross-section of a five harness woven laminate. (a) Identification of
the full representative unit-cell. (b) Detailed view of the full representative unit-cell showing the fiber tows and
matrix material. (c) The schematic representation of the basic or repeating unit cell (RUC).
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A novel contribution of this geometric modeling work is the introduction of a ‘middle
matrix layer’ as the region bounded by the interior spatially varying region between the
upper and lower fiber bundles in the 4HS, 5HS, and 8HS systems. As such, this ‘middle
matrix’ region is purely auxiliary and critical to the robustness of the respective geometric
models. Careful examination of the micrographs reported in Ref. [3] reveals evidence
of the matrix ingress represented through the ‘middle matrix layer’ incorporated in the
geometry models reported in this work.

As shown in Figures 1 and 2, the micro-structures of plain as well as satin woven fabric
composites are complex. Additionally, in satin weave fabric composites, the domain of the
RUC encompasses as many fiber tows as the minimum loom harness number (Ng) [8]
of the particular weave. Therefore, as shown in Figure 1, the RUC for a five harness (5HS)
satin weave envelopes five (5) warp fiber tows and five (5) fill fiber tows. Similarly it
could be envisioned that the RUC of a 4HS fabric composite would envelope four (4)
warp fiber tows and four (4) fill fiber tows, while the RUC of the 8HS fabric composite
would encompass eight (8) warp as well as fill fiber tows. Schematic and 3D finite
element representations of the PW, 4HS, 5HS, and 8HS satin weave fabric
composites shown in Figure 3 bring to light the underlying fundamental weave patterns
in these complex material systems. The main focus of this study is to develop
mathematical surface functions for the tow and matrix phases for each of the woven
geometries shown in Figure 3. The above functions would then be integrated into
parametric meshing schemes as needed to develop requisite finite element meshes for the
plain and satin weave systems.

The first step in the geometric modeling of these material systems requires
the characterization of the bounds of the geometrically repeating unit-cell of
each woven morphology from within the 2D woven mat. Mathematical shape
functions would be developed in the following sections to describe the fiber tow
and matrix layer geometry within the domain of these RUCs. By closer inspection of
the 5HS system, one can establish that the unit-cell itself comprises of five binary
geometric domains, as shown in Figure 4(a). These repeating geometric domains would
be referred to in this work as ‘binary sub-cells’. The 3D finite element mesh of the fiber
tow architecture within the basic or repeating unit-cell of the 5HS woven system is
reported in Figure 4(b).

A schematic representation of the imprints of the fiber tow architecture in the
four and eight harness satin weaves highlighting the domains of the RUCs are presented in
Figure 5(a) and (b), respectively. As shown in Figure 5(c), the same binary sub-cells
associated with the 5HS system can also be used to construct the 4HS and 8HS systems
as well. For the 4HS fabric though, we need three of the binary sub-cells viz., sub-cell
nos. 1, 4, and 5 from the 5HS repeating unit-cell whereas an additional binary sub-cell no.
6 needs to be defined. In all, we developed a library of six binary sub-cells which
were assembled using a parametric scheme to generate the 3D finite element definitions
of the basic or repeating unit-cells of the 4HS, 5HS, and 8HS woven fabric composites.
The top views of the individual binary sub-cells formulated in this study are shown
in Figure 5(c).

The corresponding 3D isometric views of the fiber tow architecture and matrix layer
geometry captured within the individual binary sub-cells are reported in Figure 6. In
particular, we develop mathematical surface functions to spatially describe the fiber tow
and matrix layer geometry in binary sub-cell no. 1. Then via suitable reflections of these
surface functions we characterize the fiber tow undulation and spatial variation of the
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matrix layer in binary sub-cell nos. 2 through 4. Binary sub-cell no. 5 captures the straight
and non-undulating domains of the fiber tows in the satin weave fabrics. As such, a very
simple mathematical function is used to describe the fiber tow architecture in this binary
sub-cell as would be discussed in the following sections. Finally, the binary sub-cell no. 6 is
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Figure 3. Schematic and finite element representations of the symmetric unit-cell of the plain weave system
and the RUCs of the satin weave fabric architectures. Column:(a) Top views of the weave patterns showing
the bounds of the symmetric unit-cell in the plain weave and the RUCs in the satin weave systems.
Column:(b) Three-dimensional (3D) finite element discretizations of the symmetric unit-cell of the plain weave
and the RUCs of the 4HS, 5HS, and 8HS satin weave systems.
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derived from the PW morphology through suitable geometric reflections of the
corresponding PW fabric surface functions. These fundamental traits considerably
simplify the challenging task of describing the micro-structural geometry of satin weave
polymer and ceramic matrix fabric composites.
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Figure 4. (a) Top view of the RUC of the 5HS woven system. The numbers within each square region indicate
the type of binary sub-cell occupying that location. (b) An isometric view of the corresponding 3D finite
element mesh of the 5HS weave pattern shown in (a). For clarity, only few locations of the individual binary
sub-cells are shown in (b).
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The mathematical surface functions developed in this study are defined relative to the
local xyz coordinate system of the binary sub-cells that are translated to the appropriate
location relevant to the global XYZ coordinate system of the basic or repeating unit-cell of
the particular weave. As such, the orientation of the local xyz coordinate systems in
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Figure 5. Top views of the RUCs. The numbers within dashed lines indicate the type binary sub-cell
occupying that location. (a) The 4HS woven system. (b) The 8HS woven system. (c) The top view of each
binary sub-cell used to assemble the 4HS and 8HS systems.
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individual binary sub-cells are defined to be parallel to the globalXYZ coordinate system of
the basic or repeating unit-cell. However, the origin of the xyz coordinate system in every
binary sub-cell is located at the geometric center of the i th sub-cell of dimensions ai � ai � h
as depicted in Figure 7. The choice of the particular functional forms representing the tow

Binary
sub-cell

Fill tows Warp tows Polymer matrix Ceramic matrix

Macroscopic
void

Bundles PMC system CMC system

# 1

# 2

# 3

# 4

# 5

# 6

Figure 6. The library of binary sub-cells developed in this study. The left column of meshes represents the
fiber bundle architecture captured in each binary sub-cell. The middle column of meshes displays the
polymer matrix composite (PMC) model whereas the right column of meshes incorporates large-scale matrix
voids used in modeling ceramic matrix composites (CMCs).
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centroidal and cross-sectional profiles shown in Figure 7 will be discussed in the following
section and is based on the work of Kuhn and Charalambides [1].

FIBER BUNDLE AND MATRIX SURFACE FUNCTIONS

IN BINARY SUB-CELL NO. 1

The general class of mathematical surface functions developed in this study are inspired
by the works of Kuhn and Charalambides [1], Whitcomb et al. [13] and Whitcomb and
Tang [14]. In Refs [13] and [14], the details regarding the methodology of finite element
discretization were not addressed. Also in those studies, the finite element discretization
did not account for the presence of large matrix voids that have been known to influence
the microscopic stress fields in the matrix layer [15–18]. As such, the new class of
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Figure 7. Mapping between the local binary sub-cell xyz and global unit-cell XYZ coordinate systems. The
mathematical representations of the tow edge profiles and centroidal tow axis are first developed with respect
to the local coordinate system xyz.
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mathematical shape functions developed in the present study builds on the work presented
by Kuhn and Charalambides [1] wherein the presence of large matrix voids is modeled.

Porous Matrix Model for the Binary Sub-Cell No. 1

Details of the binary sub-cell no. 1 are shown in Figure 8 where the fiber tow
architecture is represented as the warp and fill tow layers. The dotted line in the gap region
between the tows represents a special function employed to fully describe the top and
bottom surfaces of the individual tow layers everywhere within the domain of the binary
sub-cell no. 1. Along with the tows, a fully dense soft-polymer matrix material is modeled
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layers. The architecture of the novel middle matrix layer introduced to characterize the geometry of the
material is also shown.
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to surround the tows. As discussed earlier in this study, the novel concept of a ‘middle
matrix layer’ is introduced as an effective means of capturing the spatially varying interior
region observed in satin weaves. Thus, the mathematical description of the matrix material
is prescribed in terms of three individual layers, i.e., the upper matrix layer, the middle
matrix layer and the lower matrix layer, as shown in Figure 8.

The overall dimensions of the repeating unit-cell of the 5HS woven fabric are a� a� h,
consistent with Figure 4(b). The schematic representation of a single ply of 5HS woven
fabric detailing the various geometry parameters and delineating different material
components is presented in Figure 9. The in-plane length and also the width of the unit-cell
is designated a as shown in Figure 9, while h is used to represent the overall height of the
ply. The gap between parallel tows is identified by the variable g while the in-plane
dimensions of each binary sub-cell combining to form the 5HS woven unit-cell is accorded
the symbol ai. The maximum thickness of the tows is assigned the variable b.

The sinusoidal waveform assumed to describe the centroidal path of the undulating tows
with respect to the local xyz coordinate system of the binary sub-cell no. 1 is given by:

pcðxÞ ¼ sin
�x

a1

� �
: ð1Þ

A similar functional form can be used to represent the centroidal path of the undulating fill
tows in the orthogonal direction by replacing the parameter x with the parameter y and
changing the sign in front of the sine function in Equation (1) as required. Referring to the
schematic of the undulating fiber tow in Figure 7, the bottom edge profile of the tow pb is
modeled to have the same functional form as the centroidal tow in order to maintain
contact and is given by:

pbðxÞ ¼ sin
�x

a1

� �
: ð2Þ

Z
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Figure 9. Geometry parameters employed in the porous matrix model.
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The large amplitude top edge profile pt of the tow cross-section shown in Figure 7 is
given by:

ptðxÞ ¼ ð1þ �Þ sin
�

a1 � g
ðx� signðxÞg=2Þ

� �
� signðxÞ� ð3Þ

where:

� ¼ sin
�g

2a1

� �
ð4Þ

and the discontinuous sign function is defined in Ref. [1]:

signðxÞ ¼
�1 x50

þ1 x � 0:

�
ð5Þ

The symmetric profile of the tow cross-section as illustrated in Figure 7 is given by:

psðxÞ ¼ sin
�

a1 � g
ðx� signðxÞg=2Þ

� �
: ð6Þ

The cross-sectional profiles defined in Equations (2) and (3) would be used to develop
the shape functions describing the tow architecture in binary sub-cell no. 1 as shown in
Figure 8. Note that in binary sub-cell no. 1, the warp tow undulates in the domain
�a1=2 � x � a1=2 and y5� g=2, while in the domain �a1=2 � x � a1=2 and y4g=2 the
tow is straight and non-undulating. Similarly, the fill tow undulates in the domain
x5� g=2 and �a1=2 � y � a1=2, while this tow remains straight in x4� g=2 and
�a1=2 � y � a1=2. Consistent with the modeling techniques described in Ref. [1], treating
each material component of the binary sub-cell no. 1 as an individual layer, the complex
tow and matrix architecture could be represented via robust mathematical shape
functions. In order to incorporate all the characteristics of the fiber tow undulation
often observed in satin weave composite systems, we make use of an inherently
discontinuous interpolation function:

Rðx, yÞ ¼

x

g
þ
1

2
jxj5g=2; � a1=2 � y � �g=2

HðxÞ g=2 � jxj � a1 � g=2; � a1=2 � y � �g=2

0 otherwise

8>><
>>: ð7Þ

where, the Heaviside step function is given by:

HðxÞ ¼
0 x50

1 x � 0.

�
ð8Þ

In an effort to generate the top surface of the undulating part of the warp tow in binary
sub-cell no. 1, the centroidal path of the tow is assigned the functional form pcðxÞ from
Equation (1) and the profile describing the top edge of transverse section of the tow is
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summed with pcðxÞ. The top surface of the undulating part of the warp tow is characterized
by the profile pb in the interlace region bounded by x50 and y50, whereas in the line
contact region defined by x4g=2 and y50 the top surface of the tow cross-section has the
profile ps. Therefore, pb is multiplied by the ramp function R(x, y) and summed with pcðxÞ.
In both of the two regions described above, the ramp function assumes the value of 1
and as such, the transverse profile remains unaltered. However, in the bridge region
categorized by jxj5g=2 and y50, the ramp function linearly varies from 1 to 0, which
when reversed and multiplied by the profile ps gives rise to a linear interpolation
between pb and ps in the bridge region. The top surface of the non-undulating part of the
warp tow layer in the domain characterized by �a1=2 � x � a1=2 and g=2 � y � a1=2
is modeled as a linear interpolation between pt and ps to account for the constraint
imposed by the undulating fill tow on the non-undulating part of the warp tow as shown
in Figure 8.

The characteristics of the top surface of the undulating part of the warp tow shown in
Figure 8 and described above are mathematically realized by assembling Equation (1)–(7)
in the following manner:

st1ðx, yÞ ¼ �
b

2
ðsignðyÞpcðxÞ þ RðsignðyÞx, yÞpbðyÞ þ Rð�signðyÞx, yÞpsðyÞÞ ð9Þ

in:

�
a1
2
� x �

a1
2

and y � �
g

2

Equation (9) plotted as a surface is shown in Figure 10(a). In a similar manner, the geometric
details of the non-undulating part of the warp tow are addressed by the following
mathematical relationship:

st2ðx, yÞ ¼ �
b

2
ðRtð�xÞptðyÞ þ RtðxÞpsðyÞÞ ð10Þ

where the linear interpolation function RtðxÞ is defined in the domain �a1=2 � x � a1=2
and g=2 � y � a1=2 as:

RtðxÞ ¼
x

a1
þ
1

2
: ð11Þ

The surface plot of Equation (10) is reported in Figure 10(b). Equation (9) and (10) could
then be combined to describe the top surfaces of the warp tow everywhere in the domain
of the binary sub-cell no. 1 as follows:

stwðx, yÞ ¼
b

2
½HðyÞ � FHðyÞfHð�yÞsignðyÞpcðxÞ þ RðsignðyÞx, yÞpbðyÞ

þRð�signðyÞx, yÞpsðyÞ �HðyÞst2ðx, yÞg�

(
ð12Þ

in:

�
a1
2
� x �

a1
2

and �
a1
2
� y �

a1
2
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where the function FHðxÞ is introduced to force the tow surface height to zero in all
those regions where the tow does not exist. The function FHðxÞ has the following
functional form:

FHðxÞ ¼ H jxj �
g

2

� �
�H jxj þ

g

2
� a1

� �
: ð13Þ

s
w

(1, x, y)
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Figure 10. Geometric details of the fiber tow surfaces in binary sub-cell no. 1. (a) Undulating part of the
top surface of the warp tow layer. (b) The straight non-undulating part of the top surface of the warp tow.
(c) Top surface of the warp tow layer combining undulating and non-undulating domains of the warp tow layer.
(d) Bottom surface of the warp tow layer. (e) The complete warp tow layer showing the top and bottom
surfaces. (f) The complete fill tow layer showing the top and bottom surfaces.
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The term HðyÞb=2 is introduced in Equation (12) to shift the function stwðx, yÞ upward
(along the positive z direction) by an amount equal to half the tow thickness b/2 in the
region �a1=2 � x � a1=2 and g=2 � y � a1=2.

Similarly, the bottom surface of the warp tow layer could be completely described within
the domain of the binary sub-cell no. 1 with the aid of the function:

sbwðx, yÞ ¼

b

2
½HðyÞ � FHðyÞfHð�yÞsignðyÞpcðxÞ � RðsignðyÞx, yÞptðyÞ

�Rð�signðyÞx, yÞpsðyÞ þHðyÞst2ðx, yÞg�

8<
: ð14Þ

in:

�
a1
2
� x �

a1
2

and �
a1
2
� y �

a1
2
:

The notation devised to represent the surface functions of the tow and matrix layers in
the current work could be generalized as sjkði, x, yÞ. The subscript, superscript, and
arguments of this notation could be assigned different labels to describe the particular
surface function in all the six binary sub-cells developed in this work:

k ¼

w warp tow

f fill tow

um upper matrix layer

mm middle matrix layer

lm lower matrix layer

8>>>>>>>><
>>>>>>>>:

ð15Þ

j ¼
t top surface

b bottom surface

�
ð16Þ

i �! binary sub-cell number

x �! x-axis of binary sub-cell

y �! y-axis of binary sub-cell:

ð17Þ

With the aid of the above notation and Equation (12) and (14), the warp tow layer surface
functions for binary sub-cell no. 1 are given by:

stwð1, x, yÞ ¼ stwðx, yÞ

sbwð1, x, yÞ ¼ sbwðx, yÞ:
ð18Þ

The fill tow surface functions in binary sub-cell no. 1 are then derived in terms of the warp
tow surface functions as:

stfð1, x, yÞ ¼ �s
b
wð1, y, xÞ

sbf ð1, x, yÞ ¼ �s
t
wð1, y, xÞ

ð19Þ

The surface plot of Equation (19) representing the spatial variation of the fill tow layer is
presented in Figure 11(e).
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The fibers within the tows are assumed to be parallel to the centroidal axis of the tows.
As such, the angle of rotation of the fibers within the undulating portions of the tows is
computed as:

�uwy ¼ atan
@ðstwð1,x, yÞÞ

c

@x

� �

�ufx ¼ atan
@ðstfð1, x, yÞÞ

c

@y

� �
9>>=
>>; ð20Þ

where the superscript ‘c’ implies that the derivative is taken with respect to the centroidal
path of the fiber tows. Also, in Equation (20) the superscripts uw and uf denote
the undulating paths of the warp and fill tows in binary sub-cell no. 1, respectively.

xy
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z
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Figure 11. Geometric details of the fiber tow and matrix layer surfaces in binary sub-cell no. 1. (a) Upper
matrix layer. (b) Lower matrix layer. (c) Middle matrix layer. (d) Warp tow layer. (e) Fill tow layer.
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The fibers within the non-undulating paths of the warp and fill tows are aligned along the
global X- and Y-directions as shown in Figure 7, respectively. When expanded, the partial
derivatives in Equation (20) take the forms:

@ðstwð1, x, yÞÞ
c

@x
¼ �

�b

2a1
Hð�yÞ signðyÞ cos

�x

a1

� �
@ðstfð1, x, yÞÞ

c

@y
¼
�b

2a1
Hð�xÞ signðxÞ cos

�y

a1

� �
:

ð21Þ

Employing the general principles established above, the tow surface functions for the
entire library of binary sub-cells developed in this work are reported in Table 3. Note that
the surface functions for the binary sub-cell no. 6 are derived in terms of the tow surface
functions for the plain weave morphology as discussed in Ref. [1].

Each layer of the matrix material is characterized by a top surface and a bottom surface,
as shown in Figure 8. The bottom surface of the upper matrix is defined to be the interface
between the top surface of the warp and fill tows and the upper matrix layer that could
be derived in terms of the tow surface functions described in Equation (18) and (19).
The functional form taken by the bottom surface of the upper matrix is:

sbumð1, x, yÞ ¼

max stwð1, x, yÞ, s
t
fð1, x, yÞ

� �
�
a1
2
� x �

a1
2
; �

a1
2
� y � �

g

2

Rmðy, z11ðx, yÞ, z
1
2ðx, yÞÞ �

a1
2
� x �

a1
2
; jyj �

g

2

stwð1, x, yÞ �
a1
2
� x �

a1
2
;

g

2
� y �

a1
2

8>>>><
>>>>:

ð22Þ

where the compound auxiliary function Rmðx, z11ðx, yÞ, z
1
2ðx, yÞÞ linearly interpolates

between every point on the two auxiliary functions z11ðx, yÞ and z12ðx, yÞ and is defined as:

Rm ¼ z12ðx, yÞ � z11ðx, yÞ
x

g
þ
1

2

� �
ð23Þ

in:

jxj �
g

2
:

The auxiliary functions z11ðx, yÞ and z12ðx, yÞ are defined as:

z11ðx, yÞ ¼ max stwð1, x, � g=2Þ, stfð1,x, � g=2Þ
� �

z12ðx, yÞ ¼ stwð1,x, g=2Þ:

9=
; ð24Þ

The superscript ‘1’ on z11ðx, yÞ and z12ðx, yÞ indicates the binary sub-cell number, which in this
case is 1. As the polymer matrix material completely fills the volume exterior to the tows, the
top surface of the uppermatrix is simply positioned at the overall height of the binary sub-cell.
Therefore, the functional form of the top surface of the upper matrix layer is given by:

stumð1, x, yÞ ¼ þ
h

2
ð25Þ

in:

�
a1
2
� x �

a1
2
; �

a1
2
� y �

a1
2
:
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With the aid of Equations (22) and (25), the lower matrix top and bottom surfaces could
be defined as:

stlmð1, x, yÞ ¼ �s
b
umð1, y, xÞ

sblmð1, x, yÞ ¼ �s
t
umð1, y, xÞ ¼ �

h

2

ð26Þ

in:

�
a1
2
� x �

a1
2
; �

a1
2
� y �

a1
2
:

The top and bottom surfaces of the matrix layers derived in Equation (22)–(26) are
presented in Figure 11(a) and 11(b), respectively. Due to the orientation of the local coor-
dinate system, only a part of the surface represented by sbumð1, x, yÞ is visible in Figure 11(a).
However, the top surface of the lower matrix layer stlmð1, x, yÞ being an anti-symmetric
reflection of sbumð1,x, yÞ, clearly displays the complex nature of this matrix layer surface.

The middle matrix layer too is mathematically described by top and bottom surfaces,
the expressions for which are derived in terms of the tow surface functions and the
appropriate auxiliary functions in a manner similar to that used in mathematically
describing the upper and lower matrix layers. As such, the top surface of the middle matrix
layer is given by:

stmmð1, x, yÞ ¼

sbwð1, x, yÞ �
g

2
� x �

a1
2
; �

g

2
� y �

a1
2

Rmðy, z11ðx, yÞ, z
1
2ðx, yÞÞ �

a1
2
� x �

a1
2
; jyj �

g

2

sbwð1, x, yÞ �
a1
2
� x �

a1
2
;

g

2
� y �

a1
2

8>>>>><
>>>>>:

ð27Þ

where the compound auxiliary function Rmðy, z11ðx, yÞ, z
1
2ðx, yÞÞ is defined in Equation

(23) and the auxiliary functions z11ðx, yÞ and z12ðx, yÞ are given by:

z11ðx, yÞ ¼ max stwð1, x, � g=2Þ, stfð1, x, � g=2Þ
� �

z12ðx, yÞ ¼ sbwð1, x, g=2Þ:

9=
; ð28Þ

The bottom surface of the middle matrix is an anti-symmetric reflection of the top surface.
Therefore, the functional form of the bottom surface of the middle matrix is written as:

sbmmð1, x, yÞ ¼ �s
t
mmð1, y, xÞ

where:

�
a1
2
� x �

a1
2
; �

a1
2
� y �

a1
2

ð29Þ

The surface plot of the middle matrix layer comprising the top and bottom surfaces is
presented in Figure 11(c). Note that the middle matrix layer is not defined in the interlace
region characterized by x � �g=2 and y � �g=2. Everywhere else in the binary sub-cell no. 1
the top and bottom surfaces of the middle matrix layer are defined as appropriate interface
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functions between the tow layers. For the sake of completeness we have presented the warp
and fill tow layers in binary sub-cell no. 1 in Figure 11(d) and (e), respectively.

The matrix layer surface functions in binary sub-cells nos. 2 through 6 could be derived
in terms of the respective tow surface functions in a manner similar to that used in sub-cell
no. 1. Taking advantage of the similarities between various binary sub-cells as explained
earlier, the matrix layer surface functions in binary sub-cells nos. 2 through 6 are reported
in a tabular format as shown in Table 4 and 5. Here once again we note that the matrix
layer surface functions in binary sub-cell no. 6 are derived in terms of the plain weave
morphology matrix layer surface functions, as discussed in Ref. [1].

Layered Matrix Model for the Binary Sub-cell no. 1

Woven fabric ceramic matrix composites (CMCs) fabricated via the chemical vapor
infiltration (CVI) technique are most often characterized by large macroscopic voids
[1,3,19–21]. As a result, the matrix material in CVI woven CMCs appears as a non-uniform
layer of spatially varying thickness.

Consistent with the modeling approach of Kuhn and Charalambides [1], schematic
representation of a three ply 5HS CVI SiC laminate is shown in Figure 12(a). In this figure,
the darkened regions represent the large scale inter-connected network of matrix voids,
whereas the matrix material itself is shown as a layer over the tows. The full representative
unit-cell of the 5HS woven system is shown isolated within the rectangle in Figure 12(a).
In Figure 12(b), the full unit-cell is extracted from the laminate of Figure 12(a)
and the bounds of the basic or repeating unit-cell (RUC) are established. The RUC is
then extracted from within the full unit-cell as shown in Figure 12(c), where an

Matrix

Fill tows

Warp tows 

(a) Void

X

Z
(b) (c)

Fill tows

Warp tow

MatrixVoid

Fill tows

Warp tow

MatrixVoid

Figure 12. Schematic representation of the cross-section of a five harness woven laminate. (a) Identification
of the representative unit cell in the layered matrix model. (b) Detailed view of the representative unit cell
showing the fiber tows and matrix material. (c) The schematic representation of the basic or repeating unit cell
(RUC) in the layered matrix model. Mathematical surface functions are developed to describe the fiber tow
and matrix layer topology within the RUC.
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appropriate coordinate system with the positive Z�axis pointing upward is established.
The matrix layer in Figure 12(c) appears as a non-uniform layer of spatially varying
thickness and is truncated at the overall height of the repeating unit-cell as it is extracted
from the laminate configuration of Figure 12(c). As such, an additional geometry
parameter t representing the thickness of the matrix material is introduced in the modeling,
as shown schematically in Figure 13. The other geometry parameters shown in Figure 13
retain the same meaning as described in the porous matrix model presented in the
previous sub-section.

A representative 3D finite element mesh of binary sub-cell no. 1 with a non-uniform
layer of inter-tow matrix characterized by a central hole in the gap region between the tows
is presented in Figure 14. In real material systems, these holes may exhibit a rather
non-uniform 3D shape which may be approximated using circular, square or elliptical
cross-sections. However, in this work, the inter-connected matrix voids are modeled as a
funnel ending with a cylindrical stem in the tow region as shown in the isometric views of
Figure 14(a) and (b). The sectioned gap region views displayed in Figure 15(b) and (c)
illustrate the shape of the matrix material external to the tows. The spatially varying
thickness of the middle matrix layer is equal to the magnitude of the difference between the
top and bottom surfaces. The volume between the top and bottom surfaces of the middle
matrix layer is assumed to be completely filled with matrix material and as such is not
characterized by a unique geometry parameter.

Fiber tow architecture in the present layered matrix model are also described by
Equations (18) and (19). The upper and lower matrix layers stumð1, x, yÞ and sblmð1, x, yÞ
respectively, are taken to be non-uniform characterized by the spatially varying thickness
tmðx, yÞ and incorporating a circular hole. The middle matrix layer although completely
filled is modeled with a circular hole to fully define the cylindrical matrix void in the center
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Figure 13. Geometry parameters employed in the 5HS layered matrix model. Note that the upper and lower
matrix layers are truncated at the overall height of the unit-cell with their thickness monitored by the parameter t.
On the other hand, the middle matrix layer above the dashed lines is assumed to be completely filled.
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of the binary sub-cell no. 1. The functional form of the spatially varying matrix thickness is
written as follows:

tmðx, yÞ ¼

0 fðx, yÞ5
g

2
� t

1

2
fðx, yÞ þ t�

g

4

g

2
� t � fðx, yÞ5

g

2

t
g

2
� fðx, yÞ

8>>>>><
>>>>>:

ð30Þ

where the spatial function f(x, y) could represent a circle, ellipse or square:

fðx, yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
circleffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx=cÞ2 þ ðy=eÞ2
q

ellipse

maxðjxj, jyjÞ square.

8>><
>>: ð31Þ

In Equation (31), 2c and 2e represent the major and minor axes of the ellipse.
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Figure 14. Geometric details of the binary sub-cell no. 1 showing blow-up isometric views of individual layers
incorporating a central hole representative of the macroscopic porosity in CVI CMCs.
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Incorporating the spatial definition of the matrix layer thickness given in Equation (30),
the surface functions for the top and bottom surfaces of the upper and lower matrix layers
could be written in terms of the tow/matrix interface functions sbumð1, x, yÞ and stlmð1, x, yÞ
given by Equations (22) and 26, respectively:

stumð1, x, yÞ ¼ min sbumð1, x, yÞ þ tmðx, yÞ, þ
h

2

� �
(upper matrix) ð32Þ

and:

sblmð1, x, yÞ ¼ max stlmð1, x, yÞ � tmðx, yÞ, �
h

2

� �
(lower matrix) ð33Þ
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Figure 15. Geometric details of the matrix layer in binary sub-cell no. 1 near the vicinity of the central
cylindrical void. (a) Top view of binary sub-cell no. 1 showing the imprint of the tow architecture. (b) Matrix
material in the gap region. (c) Matrix material surrounding the tows in the bridging region. Note the clear
distinction between the upper matrix, middle matrix and lower matrix layers.
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Equation (32) and (33) represent the top surface of the upper matrix and bottom surface
of the lower matrix respectively. The expressions for the bottom surface of the upper
matrix sbumð1, x, yÞ and top surface of the lower matrix stlmð1,x, yÞ are given by Equations
(22) and (26), respectively. The top and bottom surfaces of the middle matrix layer
stmmð1,x, yÞ and sbmmð1, x, yÞ remain the same as those in Equations (27) and (29),
respectively. Each of the matrix layer surfaces as described by Equations (22), (26), (27),
(29), (32), and (33) are presented in Figure 16.

The expressions for the top surface of the upper matrix and bottom surface of the lower
matrix for the binary sub-cells nos. 2 through 6 in terms of the respective tow/matrix
interface surface functions could be tabulated as shown in Table 6. The other matrix layer
surface functions in these binary sub-cells remain unaltered.
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lm (1, x, y)
b

smm (1, x, y)t

smm (1, x, y)b
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(a) (b)

(c)
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z
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−g/2 < y < a1/2
−g/2 < x < a1/2

−a1/2 <  x < a1/2
−a1/2 < y < a1/2

−a1/2 < x < a1/2
−a1/2 < y < a1/2

−a1/2 < x < a1/2
−a1/2 < y < a1/2

−a1/2 < x < a1/2
−a1/2 < y < a1/2

Figure 16. Geometric details of the fiber tow and matrix layer surfaces in binary sub-cell no. 1. (a) Upper
matrix layer. (b) Lower matrix layer. (c) Middle matrix layer. (d) Warp tow layer. (e) Fill tow layer.
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ASSEMBLING THE REPEATING UNIT-CELLS

OF SATIN WEAVE FABRIC COMPOSITES

The global position of an individual binary sub-cell within the unit-cell domain
(see Figures 4(a), 5(a) and (b)) is determined by defining a square global position
matrix (GPM), with dimensions of Ng � Ng, where Ng is the minimum loom
harness number. The elements of GPM(Ng,Ng), store the address of the individual
binary sub-cell within the unit-cell domain of each satin weave fabric. In particular,
for the 4HS satin weave, the dimensions of GPM(Ng,Ng) are GPM(4, 4), with the
5HS and 8HS satin weaves associated with a GPM matrix of dimensions
GPM(5, 5) and GPM(8, 8), respectively. In addition to GPM(Ng,Ng), we need to
define two global position vectors GCX(Ng) and GCY(Ng), the elements of which
contain the global X and Y centroidal coordinates of each binary sub-cell relative to
the global XYZ directions of the individual basic or repeating unit-cells as shown in
Figure 4.

The unit-cells of the satin weave fabrics are modeled with spatial dimensions a� a� h.
The parameter a represents the in-plane dimensions of the unit-cells, while h is the
overall height of one ply of the satin weave fabric composite. In real systems, the
magnitude of a could be of the order of 6–12mm [3,21] in satin weave ceramic matrix
composites (CMCs), while in the case of PW CMCs, a could be of the order of 1–2 mm.
Consistent with the discussions in Refs [1,22,23], a general non-dimensional modeling
environment lends easily to performing broad parametric studies aimed at investigating
the effect of various micro-constituent parameters on the macroscopic response of satin
weave fabric composites. When conducting non-dimensional simulations, it is
often convenient to normalize the woven unit-cell geometry with respect to the above
mentioned parameter a. In such a case, the parameter a is chosen as the characteristic
in-plane dimension resulting in:

â ¼ a=a ¼ 1 ð34Þ

where (^) denotes a non-dimensional quantity. Since Ng number of unique binary sub-cells
are required to assemble the complete unit-cells of the corresponding satin weave fabrics,
the in-plane dimensions of each binary sub-cell are computed as:

ai ¼ a=Ng i! binary sub-cell number. ð35Þ

Employing the above normalization, we have:

âi ¼ ai=a i! binary sub-cell number. ð36Þ

Therefore it is evident from Equations (35) and (36) that:

âi ¼

1=4 4HS satin weave

1=5 5HS satin weave

1=8 8HS satin weave.

8><
>: ð37Þ
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Similarly, the other geometry parameters introduced to model repeating unit-cells of the
satin weave fabric composites are normalized as:

b̂ ¼ b=a

ĝ ¼ g=a

ĥ ¼ h=a

t̂ ¼ t=a

ð38Þ

As a result of the above normalization procedure, each binary sub-cell occupies the
non-dimensional volume of âi � âi � ĥ. With the aid of Equation (37) and the knowledge
that Ng binary sub-cells constitute the longitudinal and transverse directions of the
repeating unit-cells of the particular woven system, it becomes evident that upon the
assemblage of Ng unique binary sub-cells the overall geometric dimensions of the complete
repeating unit-cell would be 1� 1� ĥ. In the above expressions, ĥ ¼ h=a is the normalized
height of the woven ply. The minimum admissible height of the woven unit-cell is given by
ĥ ¼ 2b̂, where b̂ ¼ b=a is the normalized maximum tow thickness.

Since the mathematical surface functions are defined relative to the local xyz coordinate
systems of the individual binary sub-cells, it becomes useful to derive general relations
between the local and global normalized quantities. As such, we define normalized
geometry parameters relative to the individual binary sub-cells:

b̂i ¼ b=ai

ĝi ¼ g=ai

ĥi ¼ h=ai

t̂i ¼ t=ai:

ð39Þ

Substituting ai ¼ aâi from Equation (36) into Equation (39), we get:

b ¼ âib̂ia

g ¼ âiĝia

h ¼ âiĥia

t ¼ âit̂ia

ð40Þ

and hence the relations between the local and global normalized geometry parameters are
given by:

b̂ ¼ b=a ¼ âib̂i

ĝ ¼ g=a ¼ âiĝi

ĥ ¼ h=a ¼ âiĥi

t̂ ¼ t=a ¼ âit̂i:

ð41Þ

With the aid of the above information, we can now build GPM(Ng,Ng), ensuring the global
origin of the repeating unit-cell to be located at the geometric center. The global location of
each binary sub-cell in the 4HS, 5HS, and 8HS woven systems are reported in Table 1. The
elements of the global position vectors GCX(Ng) and GCY(Ng) storing the centroidal coordi-
nates of each binary sub-cell in the 4HS, 5HS and 8HS woven systems are reported in Table 2.
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FINITE ELEMENT DISCRETIZATION OF SATIN WEAVE FABRICS

The tow surface functions for the binary sub-cell no. 1 in Equations (18) and (19) may be
utilized to generate and locate nodes on the surface of the tows. The nodes in the interior
of the tows may then be interpolated from these surface nodes and the resulting array

Table 1. Binary sub-cell positioning matrix for satin weave composites.

(a) Four Harness Satin Weave Global Position Matrix
Sub-cell no. Location in positioning matrix

1 GPM(1,3) GPM(2,2) GPM(3,1) GPM(4,4)
4 GPM(1,1) GPM(2,4) GPM(3,3) GPM(4,2)
5 GPM(1,2) GPM(2,1) GPM(3,4) GPM(4,3)
6 GPM(1,4) GPM(2,3) GPM(3,2) GPM(4,1)

(b) Five Harness Satin Weave Global Position Matrix
Sub-cell no. Location in positioning matrix

1 GPM(1,3) GPM(2,1) GPM(3,4) GPM(4,2) GPM(5,5)
2 GPM(1,5) GPM(2,3) GPM(3,1) GPM(4,4) GPM(5,2)
3 GPM(1,4) GPM(2,2) GPM(3,5) GPM(4,3) GPM(5,1)
4 GPM(1,1) GPM(2,4) GPM(3,2) GPM(4,5) GPM(5,3)
5 GPM(1,2) GPM(2,5) GPM(3,3) GPM(4,1) GPM(5,4)

(c) Eight Harness Satin Weave Global Position Matrix
Sub-cell no. Location in positioning matrix

1 GPM(1,3) GPM(2,6) GPM(3,1) GPM(4,4) GPM(5,7) GPM(6,2) GPM(7,5) GPM(8,8)
2 GPM(1,4) GPM(2,7) GPM(3,2) GPM(4,5) GPM(5,8) GPM(6,3) GPM(7,6) GPM(8,1)
3 GPM(1,8) GPM(2,3) GPM(3,6) GPM(4,1) GPM(5,4) GPM(6,7) GPM(7,2) GPM(8,5)
4 GPM(1,1) GPM(2,4) GPM(3,7) GPM(4,2) GPM(5,5) GPM(6,8) GPM(7,3) GPM(8,6)
5 GPM(1,2) GPM(2,1) GPM(3,3) GPM(4,3) GPM(5,1) GPM(6,1) GPM(7,1) GPM(8,2)
5 GPM(1,5) GPM(2,2) GPM(3,4) GPM(4,6) GPM(5,2) GPM(6,4) GPM(7,4) GPM(8,3)
5 GPM(1,6) GPM(2,5) GPM(3,5) GPM(4,7) GPM(5,3) GPM(6,5) GPM(7,7) GPM(8,4)
5 GPM(1,7) GPM(2,8) GPM(3,8) GPM(4,8) GPM(5,6) GPM(6,6) GPM(7,8) GPM(8,7)

(c) Eight Harness Satin Weave Centroidal Position Vectors
Vector Element

GCX ¼ f3:5ai 2:5ai 1:5ai 0:5ai � 0:5ai � 1:5ai � 2:5ai � 3:5ai g

GCY ¼ f3:5ai 2:5ai 1:5ai 0:5ai � 0:5ai � 1:5ai � 2:5ai � 3:5ai g

Table 2. The global positioning vectors for satin weave composites.

(a) Four Harness Satin Weave Centroidal Position Vectors
Vector Element

GCX ¼ f1:5ai 0:5ai � 0:5ai � 1:5ai g

GCY ¼ f1:5ai 0:5ai � 0:5ai � 1:5ai g

(b) Five Harness Satin Weave Centroidal Position Vectors
Vector Element

GCX ¼ f2ai ai 0:0 � ai � 2ai g

GCY ¼ f2ai ai 0:0 � ai � 2ai g
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of nodes may be used to form 3D eight- or twenty-node isoparametric elements. The mesh
of the tows so generated may then by translated to the appropriate positions occupied by
the binary sub-cell no. 1 within the unit-cells of different satin weave fabrics with the aid
of the information provided in Table 1 and 2. This procedure is repeated for each binary
sub-cell assembled to formulate the numerical 3D finite element models of the 4HS, 5HS,
and 8HS woven fabrics studied in this work. However, care should be taken to ensure that
the nodes on the interfaces of the tow and matrix layers are aligned and that coincident
nodes should either be constrained as needed to preserve displacement continuity or
duplicate nodes should be removed.

Satin weave fabric matrix material finite element meshes may be generated in a similar
manner by employing Equations (22)–(29) in the binary sub-cell no. 1 and corresponding
equations in binary sub-cells nos. 2 through 6 from Table 4 and 5 for the porous matrix
model. While modeling the layered matrix over the tows and incorporating macroscopic
porosity, the matrix layer surface functions given by Equations (32) and (33) for the top
and bottom surfaces of the upper and lower matrix layers in binary sub-cell no. 1 need to
be employed. Similar expressions for the top and bottom surfaces of the upper and lower
matrix layers in binary sub-cells nos. 2 through 6 must be used from Table 6.

The 4HS, 5HS, and 8HS satin weave fiber tow 3D finite element meshes shown in
Figure 17(a) were generated using the principle explained above. In these figures, numbers
enclosed in boxes refer to different locations of each binary sub-cell used to generate the
complete unit-cells. In particular, the finite element mesh of the fiber tows in the 4HS
woven fabric shown in Figure 17(a) was generated using 3072 3D eight-node isoparametric
elements with a total of 8448 nodes. Similarly, the tows in the 5HS woven fabric were
meshed using 4800 3D eight-node isoparametric elements with a total of 13,200 nodes,
while the fiber tows in the 8HS woven system were discretized using 12,288 3D eight-node
isoparametric elements with a total of 33,792 nodes.

(b) Fill Tow Surface Functions
Sub-cell no. Top surface Bottom surface

2 st
f ð2; x ; y Þ ¼ st

f ð1;�x ; y Þ sb
f ð2; x ; y Þ ¼ sb

f ð1;�x ; yÞ

3 st
f ð3; x ; y Þ ¼ st

f ð1; x ;�y Þ sb
f ð3; x ; y Þ ¼ sb

f ð1; x ;�yÞ

4 st
f ð4; x ; y Þ ¼ st

f ð1;�x ;�y Þ sb
f ð4; x ; y Þ ¼ sb

f ð1;�x ;�y Þ

5 st
f ð5; x ; y Þ ¼ st

w ð5; y ; x Þ � b sb
f ð5; x ; y Þ ¼ sb

w ð5; y ; x Þ � b

6 st
f ð6; x ; y Þ ¼ �sb

w ð�y ; xÞ sb
f ð6; x ; y Þ ¼ st

w ð�y ; x Þ

Table 3. Surface functions derived for the warp and fill tows in binary sub-
cells nos. 2 through 6. The tow surface functions for binary sub-cell no. 6
are derived in terms of the warp and fill tow layer functions for the plain

weave system presented in Ref. [1].

(a) Warp Tow Surface Functions
Sub-cell no. Top surface Bottom surface

2 st
w ð2; x ; y Þ ¼ st

w ð1;�x ; y Þ sb
w ð2; x ; y Þ ¼ sb

w ð1;�x ; y Þ

3 st
w ð3; x ; y Þ ¼ st

w ð1; x ;�y Þ sb
w ð3; x ; y Þ ¼ sb

w ð1; x ;�y Þ

4 st
w ð4; x ; y Þ ¼ st

w ð1;�x ;�y Þ sb
w ð4; x ; y Þ ¼ sb

w ð1;�x ;�y Þ

5 st
w ð5; x ; y Þ ¼ �

b
2 FH ðy Þ signð�y Þpsðy Þ sb

w ð5; x ; y Þ ¼ �st
w ð5; x ; y Þ þ b

6 st
w ð6; x ; y Þ ¼ st

w ð�x ; y Þ sb
w ð6; x ; y Þ ¼ sb

w ð�x ; y Þ
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Table 4. Surface functions derived for the upper and lower matrix
layers in binary sub-cells nos. 2 through 6. The bottom surface function
of the upper matrix layer in binary sub-cell no. 6 is derived in terms of

the warp and fill tow layer functions for the plain weave system presented
in Ref. [1]. The superscript 5 on z1

5(x, y) and z2
5(x, y) indicates the binary

sub-cell no. 5. The bottom surface of the upper matrix layer in binary
sub-cell no. 5 is described using Equation (22) with z1

5(x, y) and z2
5(x, y)

substituted for z1
1(x, y) and z2

1(x, y), respectively.

(a) Auxiliary Functions For Binary Sub-Cell No. 5
Sub-cell no. Auxiliary function z5

1ðx; yÞ Auxiliary function z5
2ðx; yÞ

5 maxððst
w ð5, x , � g=2Þ, st

f ð5, x , � g=2ÞÞ st
w ð5, x , g=2Þ

(c) Lower Matrix Layer Surface Functions
Sub-cell no. Top surface Bottom surface

2 st
lmð2; x ; y Þ ¼ �sb

umð2;�y ;�x Þ sb
lmð2; x ; y Þ ¼ �

h
2

3 st
lmð3; x ; y Þ ¼ �sb

umð3;�y ;�x Þ sb
lmð3; x ; y Þ ¼ �

h
2

4 st
lmð4; x ; y Þ ¼ �sb

umð4; y ; x Þ sb
lmð4; x ; y Þ ¼ �

h
2

5 st
lmð5; x ; y Þ ¼ �sb

umð5; y ; x Þ sb
lmð5; x ; y Þ ¼ �

h
2

6 st
lmð6; x ; y Þ ¼ �sb

umð6; y ; x Þ sb
lmð6; x ; y Þ ¼ �

h
2

(b) Upper Matrix Layer Surface Functions
Sub-cell no. Botton surface Top surface

2 sb
umð2; x ; y Þ ¼ sb

umð1;�x ; y Þ st
umð2; x ; y Þ ¼ þ

h
2

3 sb
umð3; x ; y Þ ¼ sb

umð1; x ;�y Þ st
umð3; x ; y Þ ¼ þ

h
2

4 sb
umð4; x ; y Þ ¼ sb

umð1;�x ;�y Þ st
umð4; x ; y Þ ¼ þ

h
2

5 sb
umð5; x ; y Þ ¼ sb

umð1; x ; y Þ st
umð5; x ; y Þ ¼ þ

h
2

6 sb
umð6; x ; y Þ ¼ maxðst

w ð6; x ; y Þ; s
t
f ð6; x ; y ÞÞ st

umð6; x ; y Þ ¼ þ
h
2

(b) Middle Matrix Layer Surface Functions
Sub-cell no. Top surface Bottom surface

2 st
mmð2; x ; y Þ ¼ st

mmð1;�x ; y Þ sb
mmð2; x ; y Þ ¼ �sb

mmð2; y ; x Þ

3 st
mmð3; x ; y Þ ¼ st

mmð1; x ;�y Þ sb
mmð3; x ; y Þ ¼ �sb

mmð3; y ; x Þ

4 st
mmð4; x ; y Þ ¼ st

mmð1;�x ;�y Þ sb
mmð4; x ; y Þ ¼ �sb

mmð4; y ; x Þ

5 st
mmð5; x ; y Þ ¼ st

mmð1; x ; y Þ sb
mmð5; x ; y Þ ¼ �sb

mmð5; y ; x Þ

Table 5. Surface functions derived for the middle matrix layers in binary
sub-cells nos. 2 through 5. The superscript 5 on z1

5(x, y) and z2
5(x, y) indicates the

binary sub-cell no. 5. The top surface of the middle matrix layer in binary sub-cell
no. 5 is described using Equation (27) with z1

5(x, y) and z2
5(x, y) substituted for

z1
1(x, y) and z2

1(x, y), respectively.

(a) Auxiliary Functions For Binary Sub-Cell No. 5
Sub-cell no. Auxiliary Function z5

1ðx; yÞ Auxiliary Function z5
2ðx; yÞ

5 maxððst
w ð5, x , � g=2Þ, st

f ðx , � g=2ÞÞ sb
w ðx ,g=2Þ
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The complete 3D finite element meshes of the 4HS, 5HS, and 8HS woven systems
incorporating a porous polymer matrix material are presented in Figure 17(b). In this case,
the 4HS woven fabric unit-cell was discretized with 5816 3D eight-node isoparametric
elements using a total of 18,840 nodes. Similarly, the 5HS woven morphology was made
with 9420 3D eight-node isoparametric elements employing a total of 30,710 nodes, while
the 8HS woven fabric unit-cell was discretized with 24,288 3D eight-node isoparametric
elements with a total of 79,232 nodes.

A layered ceramic matrix material exhibiting macroscopic porosity was modeled over
the tows in 4HS, 5HS, and 8HS woven fabrics incorporating large-scale matrix voids as
shown in Figure 17(c). The unit-cell of the 4HS woven system in this case was modeled
with 6344 3D eight-node isoparametric elements with a total of 24,448 nodes. The 5HS
satin weave fabric repeating unit-cell was discretized with 10320 3D eight-node
isoparametric elements employing a total of 40,160 nodes. However, owing to a different
fiber architecture characterized by greater volume fraction of straight and non-undulating
fiber tows, the unit-cell of the 8HS woven fabric with a ceramic–matrix material deposited
over the fiber tows was modeled with 26,592 3D eight-node isoparametric elements using a
total of 103,424 nodes.

The finite element meshes shown in Figure 17 are presented to illustrate the outcome of
the meshing methodology while the mesh size numbers discussed above provide a sense of
the size of the problem. The density of actual finite element meshes employed to solve
particular boundary value problems reported in Ref. [12] were selected through broad
mesh sensitivity studies. While the meshes shown in Figure 17 were discretized with eight-
noded brick elements, the ability to incorporate twenty-noded brick elements is inherently
built into the programming routines. The choice of the particular element depends on
available computing resources.

(b) Lower Matrix Layer Bottom Surface Functions
Sub-cell no. Bottom surface

2 sb
lmð2; x ; y Þ ¼ maxðst

lmð2; x ; y Þ � tmðx ; y Þ;�
h
2Þ

3 sb
lmð3; x ; y Þ ¼ maxðst

lmð3; x ; y Þ � tmðx ; y Þ;�
h
2Þ

4 sb
lmð4; x ; y Þ ¼ maxðst

lmð4; x ; y Þ � tmðx ; y Þ;�
h
2Þ

5 sb
lmð5; x ; y Þ ¼ maxðst

lmð5; x ; y Þ � tmðx ; y Þ;�
h
2Þ

6 sb
lmð6; x ; y Þ ¼ maxðst

lmð6; x ; y Þ � tmðx ; y Þ;�
h
2Þ

Table 6. Surface functions derived for the top and bottom surfaces of the
upper and lower matrix layers in binary sub-cells nos. 2 through 6

associated with the layered matrix model. Note that the bottom and top
surface functions of the upper and lower matrix layers in binary sub-cell
nos. 2 through 6 remain unchanged and are as such given in Table 4.

(a) Upper Matrix Layer Top Surface Functions
Sub-cell no. Top surface

2 st
umð2; x ; y Þ ¼ minðsb

umð2; x ; y Þ þ tmðx ; y Þ;þ
h
2Þ

3 st
umð3; x ; y Þ ¼ minðsb

umð3; x ; y Þ þ tmðx ; y Þ;þ
h
2Þ

4 st
umð4; x ; y Þ ¼ minðsb

umð4; x ; y Þ þ tmðx ; y Þ;þ
h
2Þ

5 st
umð5; x ; y Þ ¼ minðsb

umð5; x ; y Þ þ tmðx ; y Þ;þ
h
2Þ

6 st
umð6; x ; y Þ ¼ minðsb

umð6; x ; y Þ þ tmðx ; y Þ;þ
h
2Þ
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MICRO-CONSTITUENT VOLUME FRACTIONS

The mathematical surface functions developed in previous sections are now employed
to calculate the fiber bundle and matrix volume fractions in the 4HS, 5HS, and 8HS
satin weave PMCs and CMCs. The volume fraction of the warp tows is given
by vwarp ¼ Vwarp=Vtotal, where the lower case v denotes the volume fraction of the
quantity indicated by the subscript, while the V denotes the volume occupied by the
same micro-constituent. Vtotal represents the total volume of the complete unit-cell which
is given by Vtotal ¼ ha2, where h is the overall height of the woven ply. Since the minimum
admissible height of the woven ply is h ¼ 2b, the total volume of the unit-cell could also
be written as Vtotal ¼ 2ba2. The volume Vwarp occupied by the warp bundles within
the unit-cell can be calculated by summing up the volume occupied by the warp bundles
in the individual binary sub-cells in the complete unit-cell of each woven system.
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Y
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Warp tows Fill tows
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Four harness satin weave

Five harness satin weave

Eight harness satin weave

(a) (b) (c)

Figure 17. Finite element meshes of the repeating unit-cells of satin weave fabric composites constructed
with geometry parameters b=ai ¼ 0:2, g=ai ¼ 0:2 and h=ai ¼ 0:45. The parameter ai for the individual
weave architectures is computed with the aid of Equation (35). Column (a) The fiber tow architecture within
the domain of the repeating unit-cells of individual weaves. Column (b) Repeating unit-cells of the 4HS,
5HS and 8HS woven fabrics impregnated with a porous polymer matrix. Column (c) Repeating unit-cells of
the 4HS, 5HS and 8HS woven fabrics impregnated with a layered ceramic matrix. In this case, the
normalized thickness of the matrix material is given by t=ai ¼ 0:05, where ai is again computed with the aid
of Equation (35) for individual weaves. All meshes were constructed using 3D eight-node isoparametric
elements.
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Accordingly, the volume occupied by the warp bundles in the unit-cell of individual satin
weave fabrics is given by:

Vwarp ¼
XNg

m¼1

XNg

n¼1

Z ai=2

�ai=2

Z ai=2

�ai=2

fstwði, x, yÞ � sbwði, x, yÞgdy dx

� �
ð42Þ

where i ¼ GPM[m, n] represents the type of binary sub-cell within which the integration is
performed.

The term Ng in Equation (42) represents the minimum loom harness number as defined
in Ref. [8]. Every binary sub-cell employed to construct the complete unit-cell of the
particular weave occupies Ng unique locations within the domain of the complete unit-cell,
which is assembled using Ng �Ng number of sub-cells. Accordingly, the total volume
occupied by the warp tows is computed by summing up the volume of the warp tows
calculated for each sub-cell. Therefore the double summation from 1 to Ng over the indices
m and n appears in Equation (42).

In a non-dimensional environment the local binary sub-cell coordinate system is subject
to the following coordinate transformation:

x̂ ¼
x

a
ŷ ¼

y

a
:

Incorporating the normalization of the geometry parameters discussed in an earlier
section, the above coordinate transformation and substituting Vtotal ¼ 2ba2, the volume
fraction of the warp bundles, vwarp, is computed as:

vwarp ¼
XNg

m¼1

XNg

n¼1

Z âi=2

�âi=2

Z âi=2

�âi=2

fstwði, ax̂, aŷÞ � sbwði, ax̂, aŷÞg

2b
dŷ dx̂

" #
: ð43Þ

In the above equation the ( ^ ) symbol denotes non-dimensional quantities.
The tow surface functions developed earlier and reported in Table 3 are linear functions

of the bundle height b. Therefore, when the surface functions representing the warp tows in
different binary sub-cells are substituted into Equation (43), the parameter b̂ appears as a
common factor in the functions stwði, ax̂, aŷÞ and sbwði, ax̂, aŷÞ. Therefore, the parameter b̂ is
cancelled as it appears exactly once in the numerator and the denominator. Consequently,
the volume fraction of the warp tows as given by Equation (43) is not a function of b̂ and
hence of ĥ (for ĥ ¼ 2b̂), but does vary with changing g/a ratios [1,15]. In balanced satin
weave fabrics, the volume occupied by the fill tows is equal to the volume occupied by the
warp tows (Vfill ¼ Vwarp), and hence the matrix volume fraction in the porous matrix
model is given by vmatrix ¼ ð1� 2vwarpÞ.

In the case of PW fabrics, the warp tow volume fraction is simply computed as [1,15]:

vwarp ¼

Z 1=2

�1=2

Z 1=2

�1=2

fstwðax̂, aŷÞ � sbwðax̂, aŷÞg

2b
dŷ dx̂ ð44Þ

where stwðax̂, aŷÞ and sbwðax̂, aŷÞ are the normalized top and bottom surface functions of the
warp tow layer in the PW system as discussed in Ref. [1].

In Figure 18, the change in the volume fraction of the polymer matrix material in
the porous matrix model of the PW, 4HS, 5HS, and 8HS satin weave fabrics is monitored.

Satin Weave Fabric Composites 31

+ [Ver: 8.07r g/W] [11.10.2008–10:04am] [1–38] [Page No. 31] REVISED PROOFS {SAGE_REV}Jcm/JCM 097437.3d (JCM) Paper: JCM 097437 Keyword
 at UNIV OF MARYLAND BALTIMORE CO on November 17, 2016jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


The normalized tow thickness b̂ ¼ b=a in the PW fabric while b̂ ¼ b=a ¼ ðai=aÞðb=aiÞ ¼ âib̂i
in the case of 4HS, 5HS, and 8HS satin weave fabric composites, as discussed in the
previous section. For the PW system b̂ ¼ 0:2 whereas for the 4HS, 5HS, and 8HS woven
systems b̂i ¼ b=ai ¼ 0:2. Note that ai for the individual satin weave fabrics is computed
with the aid of Equation (35). The plain weave as well as the satin weaves are considered to
be balanced fabrics with equal number of fibers in the warp and fill tows. The gap between
parallel tows is varied in the range of 0 � g=a � 0:2 in the plain weave fabric, while the gap
between parallel tows is varied in the range of 0 � g=ai � 0:2 in the satin weave fabrics.
The results presented in Figure 18 predict that the matrix volume fraction is independent
of the tow thickness b̂ as a result of which, the computed values of vmatrix are identical for
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Figure 18. Inter-tow matrix volume fraction in the porous matrix model computed as a function of increasing
inter-tow gap length. In all of the above simulations vf ¼ vw ¼ ð1� 2vmÞ. (a) Matrix volume fraction in the PW
composite. (b) Matrix volume fraction in the 4HS composite. (c) Matrix volume fraction in the 5HS composite.
(d) Matrix volume fraction in the 8HS composite.
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all b/a in the PW system and for all b=ai in the satin weave morphologies. Expectedly, the
results in Figure 18 report an increasing trend in vmatrix as either the ratio g/a in the plain
weave system or the ratio g=ai in the satin weave fabrics is increased.

It may be of importance to observe that the inter-tow matrix volume fraction for the
8HS systems varies between 0.38 to 0.52. One would expect that for high harness systems
indeed the matrix volume fraction approaches that calculated for an equivalent cross-ply
laminate. In such a case one would expect the respective matrix volume fraction to be
approximately 50% which is encompassed by the predictions reported in Figure 18.

The volume fraction of the fiber tows in the layered matrix model is identical to the
volume fraction of the tows in the corresponding porous matrix model. However, in the
layered matrix model, the sum of the volume occupied by the matrix material and the large
macroscopic voids is equal to the volume occupied by the matrix material in the porous
matrix model. As such, the volume fraction of the matrix material in the layered matrix
model is both a function of t=ai and b=ai as well as g=ai in satin weave fabrics. Whereas in
the PW fabric, the volume fraction of the matrix material in the layered matrix model is a
function of t/a, b/a, as well as g/a. Following the methodology developed earlier to
compute the volume fraction of the fiber tows in satin weave fabric composites, the volume
fraction of the matrix material in satin weave ceramic–matrix composites characterized by
a network of inter-connected macroscopic matrix voids is computed as:

vmatrix ¼
XNg

m¼1

XNg

m¼1

Z âi=2

�âi=2

Z âi=2

�âi=2

ðstumði, ax̂, aŷÞ � sbumði, ax̂, aŷÞÞ þ

ðstmmði, ax̂, aŷÞ � sbmmði, ax̂, aŷÞÞ þ

ðstlmði, ax̂, aŷÞ � sblmði, ax̂, aŷÞÞ

8><
>:

9>=
>;

2b
dŷ dx̂

2
666666664

3
777777775

ð45Þ

while the volume fraction of the matrix material in the PW fabric composite is computed as:

vmatrix ¼ 2

Z 1=2

�1=2

Z 1=2

�1=2

fstumðax̂, aŷÞ � sbumðax̂, aŷÞg

2b
dŷ dx̂ ð46Þ

where stumðax̂, aŷÞ and sbumðax̂, aŷÞ are the normalized top and bottom surface functions of
the upper matrix layer in the PW system as discussed in Ref. [1].

When the relevant expressions for the matrix surface functions are substituted into
Equations (45) and (46), the parameter b̂ in Equations (45) and (46) will not be eliminated
due to the inherent discontinuous nature of these functions. The variation in the matrix
volume fraction is plotted for changing t/a and fixed b=a ¼ 0:15 at three different values of
g/a for the PW morphology as shown in Figure 19(a). As expected, the matrix volume
fraction vmatrix ¼ 0:0 for t=a ¼ 0:0 and increases with increasing t/a. If g=a52b=a, then the
central hole is filled with matrix material as t=a! b=a and the matrix volume fraction
asymptotes to that of the porous matrix model. Thematrix volume fraction is monitored for
changing values of b/a in Figure 20(a) for the PW fabric. The non-dimensional matrix
thickness expressed as the geometry parameter t/a is kept fixed at 0.05, while the matrix
volume fraction is plotted for varying b/a for three different values of g/a. Since t/a is fixed,
the total volume occupied by the matrix material within the unit-cell remains constant, but
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the volume of the unit-cell itself increases with increasing b/a, resulting in decreasing matrix
volume fraction and increasing void volume fraction. As b=a! 0, the matrix volume
fraction reaches steady-state values for different g/a ratios. This is because t/a is fixed and
for small b/a, t=a! h=a thus tending to become identical to the porous matrix model.

While the results reported in Figures 19(a) and 20(a) pertain specifically to the PW
system, similar results are reported for the 4HS, 5HS, and 8HS satin weaves for increasing
t=ai and b=ai under three different inter-tow gap lengths g=ai ¼ 0.0, 0.1, and 0.2 in
Figures 19(b) (c), (d), and 20(b), (c), (d), respectively. The tow volume fractions in the PW,
4HS, 5HS, and 8HS woven systems remain the same for each b=ai but the matrix
volume fraction in the satin weaves increases due to the additional middle matrix layer.
In other words, for given values of the inter-tow gap g=ai, tow thickness b=ai and
matrix thickness t=ai, the matrix volume fraction in satin weave fabric composites is shown
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Figure 19. Inter-tow matrix volume fraction in the layered matrix model computed as a function of increasing
matrix thickness. The void volume fraction in all of the above simulations is computed as
vvoid ¼ 1� ðvm þ 2vwÞ. (a) Matrix volume fraction in the PW composite. (b) Matrix volume fraction in the 4HS
composite. (c) Matrix volume fraction in the 5HS composite. (d) Matrix volume fraction in the 8HS composite.
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to be greater than the matrix volume fraction in the corresponding PW system, as reported
in Figure 19 and 20. Therefore, the void volume fraction in satin weave fabric ceramic–
matrix composites (CMCs) fabricated via the CVI technique is less than corresponding
plain weave CMCs fabricated via the same CVI technique.

DISCUSSION

The methodology of modeling woven composites as stacked non-uniform individual
layers first developed by Kuhn and Charalambides [1] has greatly reduced the comple-
xity in characterizing their geometry and the formulation of reliable analysis tools.
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Figure 20. Inter-tow matrix volume fraction in the layered matrix model computed as a function of increasing
tow height. Consistent with the studies reported in Figure 19, the void volume fraction in all of the above
simulations is computed as vvoid ¼ 1� ðvm þ 2vwÞ. (a) Matrix volume fraction in the PW composite. (b) Matrix
volume fraction in the 4HS composite. (c) Matrix volume fraction in the 5HS composite. (d) Matrix volume
fraction in the 8HS composite.
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The general ideas presented in Ref. [1] have been extended in this work to model the
complicated satin weave fabrics using a sub-domain approach [2]. Focusing the
mathematical treatment of the fiber tow and matrix layers on one such sub-domain and
then using the surface expressions so developed to model other unique sub-domains lends
easily to the computer implementation of the general algorithm described in an earlier
section. The mathematical surface functions developed in this study are of the general class
developed in Ref. [1] and accurately model the complex micro-structural architecture of
satin weave composites. The surface functions are able to capture the unique
characteristics of both the polymer and ceramic–matrix materials deposited onto the
woven fiber bundles through the CVI technique.

It may be of importance to emphasize that the geometry models developed as part of
this study are expected to yield improved estimates of the spatially varying deformation,
strain and stress fields dominating this complex class of composite systems. Prior models
such as those reported in Ref. [8] utilized simplistic geometry approximation for the bundle
phases. As a result, naturally inadmissible strain and stress discontinuity are introduced
thus limiting the model capabilities in predicting the requisite strain and stress fields. The
current model, as demonstrated elsewhere [12,18,22–24] possess the critical geometry and
material definition required for the prediction of more accurate mechanical fields. This is
an important distinction, especially when micro-fields derived through the models are used
to drive the evolution of micro-damage and eventual composite fracture.

As such, the geometry models developed herein could now be employed to formulate
fundamental elasticity boundary value problems aimed at addressing the mechanical and
thermal response of the satin and plain weave PMCs and CMCs. The fiber tow and matrix
layer surface functions developed herein may be extended to model hybrid fabrics
incorporating different numbers of fibers in the fill and warp directions. This type of
modeling effort is addressed in Ref. [25].

The example finite element meshes presented in Figure 17 were discretized using
eight-noded linear continuum brick elements. Due to the weave geometry and undulations
of the fiber tows, some elements, especially in the middle matrix layer tend to be very
slender. Such a situation may result in erroneous stress estimates in those limited regions.
As a means of avoiding the above, and before finalizing each mesh for a production run,
element quality checks were performed using tools integrated into the meshing algorithms
as well as other external tools available in commercial software such as Ref. [26]. The
above checks indicated that in the range of 0:05 � b̂i � 0:2, and 0:0 � ĝi � 0:2,
representative of most woven systems, six eight-noded elements across the tow width,
two elements each in the tow and lower, middle and upper matrix thickness directions, and
across the gap region, in PMCs yield acceptable results. While for CMCs as well the above
element densities were determined to be acceptable, the discrete voids in these materials
were required to be discretized with at least three rings of elements with 16 elements per
ring, in order to accurately capture local stress concentrations.

CONCLUSIONS

In this study, 3D geometry models of the complex micro-structural architecture of satin
weave CMCs comprised of discrete macroscopic porosity have been developed.
The individual material micro-constituents were treated as non-uniform layers in order
to describe their spatial variation mathematically. The fiber tows were modeled as
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non-uniform warp and fill tow layers while the matrix material was partitioned into the
upper matrix, middle matrix and the lower matrix layers enabling the robustness and
efficient matrix geometry description.

Mathematical surface functions describing the geometry of these individual layers
within the domain of binary sub-cells were developed. These functions are rather general
in nature and can be employed to study a broad range of satin weave composite systems.
The porous matrix model was developed to simulate the micro-structure associated with
satin and plain woven PMCs. The domain outside of the fiber tows in such materials is
completely occupied by the soft-polymer matrix material, which may exhibit dispersed
porosity. On the other hand, the layered matrix model was developed to study the fiber
tow architecture and matrix material deposition via the CVI technique in satin and
plain woven CMCs. The stiff-ceramic–matrix material is deposited as a thin layer of
spatially varying thickness over the fiber tows in woven CMCs. CMCs fabricated via the
CVI technique have been known to possess large-scale discrete porosity [19,21].
The mathematical functions developed in this work are able to accurately capture such
intricate geometric details of the micro-structural architecture of woven CMCs.

The woven unit-cell geometry models developed in this work were employed to perform
parametric studies as needed to establish the micro-constituent volume fraction functional
relationships, in both PMC and CMC systems. The results presented for the PW
architecture are in excellent agreement with similar studies reported in Ref. [1], while the
trends in the matrix volume fraction as a function of different geometry parameters appear
to follow intuitive trends.

The geometry models and associated 3D finite element meshes were developed as the
first critical step of a comprehensive numerical study aimed at capturing the linear and
damage induced non-linear response of woven systems. Related mechanics models and
model predictions are presented elsewhere [12].
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