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a b s t r a c t

The study is motivated by the need to develop highly sensitive tactile sensors for both robotic and bionic
applications. The ability to predict the response of an elastomeric layer under severe pressure conditions
is key to the development of highly sensitive capacitive tactile sensors capable of detecting the location
and magnitude of applied forces over a broad range of contact severity and layer depression. Thus, in this
work, a large deformation Mooney–Rivlin material model is employed in establishing the non-linear
mechanics of an elastomeric layer of finite thickness, subjected to uniform displacement of controlled
compression. Thus, an analytical non-linear model for the above described problem which is validated
numerically via the method of finite elements is developed. Two dimensional, plane strain conditions of
an infinitely long and of finite thickness elastomeric layer are assumed. The layer is subjected to a
uniform vertical large displacement with symmetry conditions applied at the contact center. Cauchy
normal and shear stress profiles as well as displacement profiles are established over a broad range of a
layer compression including up to 40% of layer thinning. The model allows for the determination of the
non-linear relationship between the relative separation of embedded conducting electrodes and thus the
sensor capacitance during touch, to the force magnitude of the force concentrated at the symmetry plane
or sensor center. The current model is expected to further improve the sensitivity and range of polymeric
tactile sensors currently under development (Charalambides and Bergbreiter, 2013) [1]. As shown
elsewhere (Kalayeh et al., 2015) [2], capacitance–force model predictions are found to be in remarkable
agreement with experimental measurements for a broad family of self-similar pressure sensors.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The development of robust tactile sensor technologies has
received ample attention over the last three decades [3–11].
Initially driven by the need to develop sensitive robotic skin that
would enhance a robots sense of grasping and touch, flexible
tactile sensors are more recently being considered in the devel-
opment of smart human like skin that would eventually be
integrated into the human nervous system thus advancing bionic
technologies. For example, in 2005 and 2006, J. Sulivan and C.
Mitchel who have lost their arms in life changing accidents were
the first man and woman to receive bionic arms.1 They have since
been able to control their bionic arm and manipulate objects, thus
restoring a sense of normalcy in their daily lives. While the above
examples give a glimpse of the transformative potential of the
evolving tactile sensor technologies, ample examples of the use of
specialized micro-sensor devices can be found in robotic systems

[12,13], medical tools and devices used during surgery and other
medical purposes [14,15].

In accordance with Lee and Nicholls [16] a tactile sensor is, “a
device or system that can measure a given property of an object or
contact even through physical contact between the sensor and the
object”. This study focuses on the modeling and development of
tactile sensors capable of measuring the contact pressure load
between the sensor and an object. The ultimate goal is to expand
the work presented in this study as needed to assess normal and
shear force magnitudes as well as their position and the shear
direction. Such a sensor can then be used both in robotic applica-
tions as well as in the development of “smart” artificial skin
mimicking human perception with grasping capabilities. For the
latter type of applications, scalability, flexibility, and stretchability
are important characteristics for skin-like sensors [17].

In recent years, Microelectromechanical systems (MEMS) have
been integrated into tactile sensing technology, and become a key
feature in tactile sensors developments. Many MEMS based tactile
sensors have been designed and fabricated [1,18–21]. In these
sensors, silicon-diaphragm structures are frequently used for
measuring contact forces [22–25]. But in general, silicon based
devices do not provide enough stretchability and flexibility.
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Thus, flexible substrates of various polymer-based materials, such
as parylene, polyimide (PI), or polydimethlysiloxane (PDMS), were
proposed as the substrates for flexible sensors.

A typical conductive polymer-based tactile sensor consists of a
flexible, conductive gel or elastomer capable of sensing tactile
information with the aid of patterned electrodes for sensor read-
out. The electrodes are usually embedded in gel (PDMS)
[1,18,20,21,26,27] in pair arrangements for sensor capacitance
measurements. As established elsewhere [28,29] the capacitance
between two electrodes is proportional to the electrode over-
lapping area while inversely proportional to the spacing distance
between electrodes. Deformations induced by surface contact
normal and shear stresses in the proximity of the electrode gap
cause changes both in the electrode overlapping area and the
electrode spacing distance. As a result, the deformed sensor
outputs a new capacitance. Thus, the capacitance change could
be used to identify the location, magnitude and direction of the
applied loads. However, in doing so, one is required to solve an
inverse problem that may not have a unique solution and may be
difficult to attempt especially under large deformation, large strain
conditions.

In light of the above, modeling of tactile sensors has not kept
pace with the rapid advances in tactile sensor fabrication. In [30],
Kumar et al. developed an analytical model for capacitive tactile
sensors based on a stress inversion method. They calculated
the displacements of embedded features in a polymeric matrix
with the aid of an Optical Coherence Tomography (OCT) device
and then used fundamentals of elasticity to derive the related

stress/strain fields. In their approach they modeled PDMS as linear
elastic material which is a limiting assumption. In 2011, D'Amore
et al. [31] proposed a tactile sensor prototype based on LED (Light
Emitting Diode)-phototransistor. They also modeled the relation-
ship between the applied force and phototransistor measurements
using neural network approach. Later on, in 2012, De Maria et al.
derived an analytical model based on proposed sensor prototype
in [31] by approximating the elastic layer with a single elastic
beam with elliptical cross section [32]. In 2013, they enhanced
their approximated analytical model to overcome some of its
limitations like the model inability to capture the contact force
applied in a direction other than the radial direction [33]. Lee et al.
developed a simplified 3D analytical model for capacitive tactile
sensors in [34], like in previous works, they limited their model to
small deformations. In [35], Liang et al. present analytical model
along with finite element simulations for capacitive tactile sensors
by utilizing Ritz method and approximating the deformation field
with Chebychev polynomials. Similar to [30] they model the PDMS
as linear elastic material. Also in the aforementioned work the
reported capacitance–force relation is limited to linear regime, i.e.,
small deformations. There are also some reports on using MEMS
and multi-physics solvers to simulate the performance of these
sensors [20].

As already mentioned, small deformation, strain conditions are
often employed as needed to obtain relevant results when operat-
ing within the linear regime [36,26,27]. Invariably, such assump-
tions limit the reliable sensor range rendering the interpretation of
sensor capacitance readings not reliable under the application of
relatively large contact loads.

In order to overcome some of the above sensor design limita-
tions, this study employs a non-linear material and kinematic
model capable of capturing the polymeric layer deformation over a
wide range of applied loads accounting for both material and
geometric non-linearities. The premise of the study is that the
relatively stiffer electrodes, during deformation, “float” within the
layer like a pair of stiff wires placed in a layer of soft jello. As such,
all information needed for the interpretation of capacitance
change readings can be extracted from the large deformation
mechanics of the elastomeric layer alone, subjected to the applied
contact loads. In fact, as is shown in our other work [2], capaci-
tance–pressure load model predictions developed as part of this
effort are shown to be in remarkable agreement with experimen-
tal measurements over a wide range of applied contact sensor
loading. While an analytical model for a unidirectionally com-
pressed polymeric layer is fully developed in this study, requisite
non-linear finite element studies are also presented with broad
comparisons between the analytical and finite element results for
up to 40% layer compression. The detailed development of both
the analytical and numerical finite element models shall be
presented next.

2. Analytical model development

The analytical model developed in this study is formulated
based on the polymeric sensor geometry shown in Fig. 1. Sensor
design details including the materials and micro-fabrication pro-
cess used can be found elsewhere [1]. The testing protocol, the
extraction of experimental data and comparisons to the model
predictions are presented in detail in [2]. As shown in Fig. 1, a
polymeric layer of initial or undeformed thickness H is subjected to
a uniform displacement U at its top surface. Using a specialized
micro-fabrication process [1], conducting electrodes of higher
stiffness compared to the polymer layer are introduced as horizon-
tally embedded layers at position S from the bottom solid founda-
tion. At its unloaded or initial position, the sensor electrodes are

Fig. 1. A schematic of a flexible polymer layer sensor developed in [1] for contact
pressure detection. The undeformed state is shown in (a) whereas the deformed
state under uniform displacement conditions is shown in (b). In the model
development, an infinitely long layer under plane strain condition is assumed. As
shown, typical tactile contact to electrode spacing ratio is well over 100, thus,
justifying the infinitely long layer approach since interested only in obtaining layer
deformation in the near vicinity of the electrode gap. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
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aligned, symmetrically placed relative to the x2-axis of symmetry as
shown in Fig. 1. The initial electrode thickness is T and the electrode
width is W spanning the entire sensor width.

The boundary value problem solved as part of the analytical
model is meant to capture the deformation of the polymer layer in
the absence of the relatively stiffer electrodes. As such, in this
model, stiffer electrodes suspended within the softer polymer
layer are assumed to displace consistent with the surrounding
layer deformation. For illustrative purposes, Fig. 1 shows sche-
matics of both the undeformed (a) and deformed (b) layer sub-
jected to a uniform top surface displacement U. The red dashed
horizontal line indicates the deformed location of the top contact
surface, whereas the displaced electrodes are represented by the
faded yellow layers. As shown, a point P initially located at
reference position x1, x2, x3 has displaced to P0 marked by the
current coordinates y1, y2, y3. The displacement components of
point P are assumed to be u1ðx1; x2Þ and u2ðx2Þ. In our layer model,
these latter displacements are those obtained from the large
deformation mechanics of the layer model in the absence of the
electrodes thus neglecting electrode layer–polymeric layer inter-
action during deformation. As will be shown later on, in this study,
such approach does allow for the development of useful analytical
expressions governing the electrode pair gap evolution with the
applied displacement which is critical in capacitance measure-
ments and interpretation. In addition to the above, an electrode
layer thinning during model deformation is also developed as a
“stand-alone” problem knowing the polymeric layer stress state at
the electrode position.

2.1. Layer kinematics

In light of the above, the polymeric layer mechanics model is
formulated and developed using the geometry shown in Fig. 2.
Given the large tactile contact area to electrode spacing ratio
shown in Fig. 1, an infinitely long elastomeric layer is assumed.
Furthermore, assuming uniform contact along the x3 direction, the
layer deformation takes place under plane strain conditions
provided that the material properties, layer geometry and bound-
ary conditions remain as those shown in Figs. 1 and 2 on the x1–x2
plane profile.

Given the above, it is assumed that the soft polymer layer in the
vicinity of the electrode pair undergoes large deformations
induced by a uniform displacement U during tactile contact on
the top surface of the sensor as shown in Fig. 2. At the same time,
Fig. 2 is also depicting that the deforming layer is assumed to be
securely fixed to a rigid substrate. In the model development, a
Mooney–Rivlin hyperelastic material response is used to relate
true stress to true strain. Large deformation kinematics are
developed consistent with the solution approach used in [37]
and using the ðx1; x2; x3Þ coordinates for the reference or

undeformed state and ðy1; y2; y3Þ coordinates parameterizing the
deformed or current state as shown in Fig. 2. Symmetry conditions
are enforced along the x1 ¼ 0 and y1 ¼ 0 axes.

In light of the above and by assuming that initially horizontal
lines remain horizontal after deformation the following kinematics
equations are derived:

y1ðx1; x2; x3Þ ¼ y1ðx1; x2Þ; ð1aÞ

y2ðx1; x2; x3Þ ¼ y2ðx2Þ ¼ gðx2Þ; ð1bÞ

y3ðx1; x2; x3Þ ¼ y3ðx3Þ ¼ x3; ð1cÞ
where gðx2Þ is a determined general function that depends only on
x2.

Based on the above equations the deformation gradient tensor
~F can be derived as follows:

½Fij� ¼

∂y1
∂x1

∂y1
∂x2

∂y1
∂x3

∂y2
∂x1

∂y2
∂x2

∂y2
∂x3

∂y3
∂x1

∂y3
∂x2

∂y3
∂x3

2
6664

3
7775¼

∂y1
∂x1

∂y1
∂x2

0

0 g0ðx2Þ 0
0 0 1

2
64

3
75: ð2Þ

Consistent with Rivlin phenomenological theory, the Mooney–Rivlin
hyperelastic material employed in this study should lead to isohoric
deformation conditions, i.e., no change in volume allowed at any
point in the solution domain. Under large deformation conditions
isohoric deformation requires that

J ¼ detð ~F Þ ¼ ∂y1
∂x1

g0ðx2Þ ¼ 1; ð3Þ

therefore,

∂y1
∂x1

¼ 1
g0ðx2Þ

; ð4Þ

thus by integrating the above equation one arrives at

y1ðx1; x2Þ ¼
1

g0ðx2Þ
x1þkðx2Þ

¼ f ðx2Þx1þkðx2Þ; ð5Þ
where f ðx2Þ ¼ 1=g0ðx2Þ is introduced for convenience and kðx2Þ is an
arbitrary function of x2 which will be determined through boundary
conditions later on in this work.

The form of y1 given above is derived using the adopted form
for y2 ¼ gðx2Þ along with the condition of isohoric deformation that
applies to the Mooney–Rivlin material adopted in the study
specifically. In light of Eq. (5), the kinematic equations take the
form

y1ðx1; x2Þ ¼ x1f ðx2Þþkðx2Þ; ð6aÞ

y2ðx2Þ ¼ gðx2Þ; ð6bÞ

y3ðx3Þ ¼ x3: ð6cÞ

2.2. Boundary conditions

Due to symmetry, the points on the x1 ¼ 0 (symmetry axis)
should remain on the same axis after deformation, i.e.,

y1ð0; x2Þ ¼ 0: ð7Þ
In addition, the points on the bottom surface of the layer attached
to a rigid foundation should remain stationary during the defor-
mation, i.e.,

y1ðx1;0Þ ¼ x1; ð8aÞ

y2ðx1;0Þ ¼ 0: ð8bÞ
When enforcing symmetry condition given by Eq. (7) it follows
that kðx2Þ ¼ 0 and thus

Fig. 2. The polymer layer geometry used in formulating the large deformation,
large strain layer mechanics model. During deformation Point Pðx1 ; x2 ; x3Þ in the
reference configuration displaced to Point P0ðy1 ; y2 ; y3Þ with displacement compo-
nents u1ðx1 ; x2Þ and u2ðx2Þ as modeled in this study.
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y1ðx1; x2Þ ¼ x1f ðx2Þ: ð9Þ
The above condition further simplifies the kinematic equations as
follows:

y1ðx1; x2Þ ¼ x1f ðx2Þ; ð10aÞ

y2ðx2Þ ¼ gðx2Þ; ð10bÞ

y3ðx3Þ ¼ x3; ð10cÞ
with fg0 ¼ 1. With the aid of the above equations the deformation
gradient takes the form

~F ¼
f x1f

0 0
0 g0 0
0 0 1

2
64

3
75: ð11Þ

The associated finger deformation tensor ~B can be calculated as
follows:

~B ¼ ~F : ~F
T ¼

f 2þðx1f 0Þ2 x1f
0g0 0

x1f
0g0 g02 0
0 0 1

2
64

3
75: ð12Þ

Its inverse is then given by

~B
�1 ¼

g02 �x1f
0g0 0

�x1f
0g0 f 2þx21f

02 0
0 0 1

2
64

3
75: ð13Þ

2.3. Constitutive response

The soft polymer phase is modeled using a Mooney–Rivlin
hyperelastic material response. In such hyperelastic materials the
stress and strains can be related through a strain energy function
ΦðI1; I2; I3Þ which is often expressed in terms of strain invariants
I1; I2; I3 or principal stretch ratios λ1; λ2; λ3. The stain invariants can
be expressed in terms of the stretch ratios as follows [38]:

I1 ¼ λ21þλ22þλ23; ð14aÞ

I2 ¼ λ21λ
2
2þλ22λ

2
3þλ23λ

2
1; ð14bÞ

I3 ¼ λ21λ
2
2λ

2
3: ð14cÞ

For incompressible materials associated with isohoric deformation,
I3 ¼ ðλ1λ2λ3Þ2 ¼ ðdetð ~F ÞÞ2 ¼ J2 ¼ 1 and consequently Φ¼ΦðI1; I2Þ.
While several forms of strain energy functions have been proposed
in modeling various types of hyperelastic materials [39], in this
study we shall employ a Mooney–Rivlin material model such that

Φ¼ C10ðI1�3ÞþC01ðI2�3Þ; ð15Þ
where C10 and C01 are material properties describing the elastic
response of the material. For isotropic materials the shear and bulk
modulus are defined respectively as

μ0 ¼ C10�C01; ð16aÞ

K0 ¼
2
D1

: ð16bÞ

For incompressible systems D1 ¼ 0 and K0-1. In accordance with
the adopted Mooney–Rivlin model the true or Cauchy stress ~σ can
be obtained as follows [38]:

½σ� ¼ �P½I�þC1½B�þC2½B�1�: ð17Þ
The above constitutive model allows us for a pressure term �P as
needed to properly account for incompressibility conditions. In the
above equation C1 ¼ C10 and C2 ¼ C01 whereas ½B� and ½B�1� are the
finger deformation tensor and its inverse given by Eqs. (12) and (13)
respectively.

2.4. The Cauchy and Piola–Kirchhoff stresses

Consistent with Eq. (17) and with the aid of Eqs. (12) and (13)
the following expressions are obtained for the Cauchy stresses:

σ11 ¼ �PþC1ðf 2þðx1f 0Þ2ÞþC2g02; ð18aÞ

σ12 ¼ ðC1�C2Þx1f 0g0; ð18bÞ

σ22 ¼ �PþC1g02þC2ðf 2þx21f
02Þ: ð18cÞ

In enforcing local equilibrium in the reference state or undeformed
state, the 1st Piola–Kirchhoff tensor ~T is required. The latter tensor
can be expressed in terms of the Cauchy stress tensor ~σ , the
deformation gradient ~F , and J ¼ det ~F as follows:

~T ¼ J � ~F �1 � ~σ : ð19Þ
Thus the components of the above 1st Piola–Kirchhoff stress
tensor are derived and take the following form:

T11 ¼ g0ð½�PþC1ðf 2þðx1f 0Þ2ÞþC2g02�
�ðC1�C2Þðx1f 0Þ2Þ; ð20aÞ

T12 ¼ �x1f
0½�PþC1g02þC2ðf 2þx21f

02 Þ�
þðC1�C2Þx1f 0g02; ð20bÞ

T21 ¼ ðC1�C2Þx1f 0; ð20cÞ

T22 ¼ f ½�PþC1g02þC2ðf 2þx21f
02Þ�: ð20dÞ

As evident by the form of the equations both Cauchy and Piola–
Kirchhoff stresses are given in terms of the unknown functions
f ðx2Þ and g0ðx2Þ, the pressure Pðx1; x2Þ and material constants C1
and C2.

2.5. Enforcing local equilibrium

In the absence of body forces, the local equilibrium equations
enforced in the reference or undeformed state are given by
Tki;k ¼ 0 which can be expanded as follows:

∂T11

∂x1
þ∂T21

∂x2
¼ 0; ð21aÞ

∂T12

∂x1
þ∂T22

∂x2
¼ 0: ð21bÞ

When combining Eqs. (20a)–(20d) and equilibrium equations (21),
one arrives at the following consistency equations in Pðx1; x2Þ,
f ¼ 1=g0, f 0, and f ″:

∂P
∂x1

¼ 2C2x1f
02 þðC1�C2Þx1ff ″; ð22aÞ

∂P
∂x2

¼ �ðC1þC2Þ
f 0

f 3
þðC1þC2Þx21f 0f ″þ2C2f

0f : ð22bÞ

By differentiating (22a) with respect to x2 and (22b) with respect
to x1 it can be shown that

∂
∂x2

f ″

f
¼ 0; ð23Þ

therefore,

f ″

f
¼ A; ð24Þ

where A is a constant of integration. An expression for the pressure
Pðx1; x2Þ can be obtained in terms of the reference coordinates,
f ðx2Þ and f 0ðx2Þ by combining Eqs. (22) and (24), such that
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P ¼ ðC1�C2Þ
2

Ax21f
2þðC1þC2Þ

2
1

f 2

þC2ðx21f 02þ f 2ÞþB; ð25Þ
where A and B are constants to be determined.

2.6. Enforcing remaining boundary conditions

In accordance with the deformation schematic shown in Fig. 3,
the following boundary conditions apply

(i) Kinematic geometric conditions

on x2 ¼ 0 y1ðx1;0Þ ¼ x1; ð26aÞ

y2ðx1;0Þ ¼ 0; ð26bÞ

on x1 ¼ 0 y1ð0; x2Þ ¼ 0; ð26cÞ

on x2 ¼H y1ðx1;HÞ ¼ λx1; ð26dÞ

y2ðx1;HÞ ¼H�U ¼ h: ð26eÞ

(ii) Stress traction conditions

on x1 ¼ 0 σ12ð0; x2Þ ¼ 0
ðsymmetry conditionÞ ð27aÞ

on x2 ¼H σ12ðx1;HÞ ¼ 0
ðsmooth contact conditionÞ ð27bÞ

(iii) Global equilibrium in the long layer direction

As will become apparent later on in this study, global force
equilibrium in the x1-direction yields critical information regard-
ing the build-up of pressure in the area of interest close to the
symmetry plane beneath the sensor contact region. Enforcing such
a condition on an infinitely long layer subjected to a constant
compression along its top surface would be difficult if not
impossible, since it will require information on the non-zero T11
stress component acting on a vertical line as x1-1 while also
requiring the entire profile of T21ðx1;0Þ as x1-1. Meanwhile, in
such a case, unrealistically high pressures are expected to build in
the proximity of the symmetry plane as the layer compresses and
material is forced outwards from the symmetry plane, over an
increasingly smaller and smaller region with increasing layer
compression. Thus, such a case would not be of interest to the
modeling and design of pressure sensors for which pressure is
applied over a finite sensor contact surface.

In aligning our model with the pressure sensor geometric
conditions, global equilibrium in the x1-direction is applied for a
layer that its length is sufficiently long when compared to the
sensor contact area such that the right edge of the layer remains
traction free. An example of such a system is shown in Fig. 4 which
shows the deformed mesh and contours of the T11 and T12 stress
components plotted on the deformed layer configuration. The
results reported in the above figure were obtained using the
Abaqus finite element software and the COMSOL multi-physics
software package for verification. The finite element modeling is
discussed in more detail later on in the study. As shown in Fig. 4,
both the shear and normal stresses appear to diminish rapidly
beyond the contact region over which the uniform displacement is
applied on the top surface and become zero on the right vertical
face of the layer. The above results remain consistent with those
reported in Figs. 6 and 7 where contours and profiles of the shear
stress components are reported for a layer subjected to finite
contact.

In such a system, the fields dominating the region in the
vicinity of the contact zone remain of interest and relevance to
the sensor design and most importantly can be captured by the
model proposed herein. In light of the above, and consistent with
Fig. 5, global equilibrium in the x1 direction can be enforced using
the free body diagram of the symmetric right half of the layer
extending over a sufficiently large length xc compared to the
contact region. Thus, under a smooth contact condition, i.e.,
T21ðx1;HÞ ¼ 0, and with the aid of Fig. 5, the global equilibrium
in the x1 direction takes the formX

F1 ¼ 0

)
Z H

0
T11ð0; x2Þ dx2þ

Z L

0
T21ðx1;0Þ dx1

þ
Z xc

L
T21ðx1;0Þ dx1þ

Z H

0
T11ðxc; x2Þ dx2 ¼ 0: ð28Þ

Again, consistent with Fig. 5, T21ðx1;0Þ-0, i.e., it vanishes in
Lrx1rxc while also T11ðxc; x2Þ ¼ 0 at the traction free end of the

Fig. 3. Kinematic geometric and traction boundary conditions enforced in solving
(24) simulating an infinitely long layer subjected to uniform compressive displace-
ment U.

Fig. 4. (a) The deformed mesh of a finite elastomeric layer, fixed along its bottom
surface and subjected to 0:05H uniform displacement over a finite contact probe
region of length comparable to the layer thickness H. Fringe contours of (b) the 1st
Piola–Kirchhoff stress component T11 and (c) the 1st Piola–Kirchhoff shear stress
T12 associated with the problem solve in (a) above. Both stress components are
plotted over the deformed configuration. The dark region represents region of zero
stress levels. The results are obtained using COMSOL multiphysics version 5.0. with
6212 triangular elements.
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layer. Thus, the above equation can be reduced as follows:Z H

0
T11ð0; x2Þ dx2þ

Z L

0
T21ðx1;0Þ dx1 ¼ 0: ð29Þ

Alternatively, by considering the equilibrium in the x1 direction of
a domain ð0; LÞ � ð0;HÞ one can also arrive at the following
equation:Z H

0
T11ð0; x2Þ dx2þ

Z L

0
T21ðx1;0Þ dx1

þ
Z H

0
T11ðL; x2Þ dx2 ¼ 0: ð30Þ

Since both forms of the equilibrium equations reflected in
Eqs. (29) and (30) are true, it follows thatZ H

0
T11ðL; x2Þ dx2 ¼ 0: ð31Þ

The above condition must remain true and can be used as an
alternative to (29) in calculating the constant B. However, the
above condition as in condition (29) still requires knowledge of L,
i.e., the extent over which the shear stress T21ðx1;0Þ vanishes.

Thus, in the case of a finite contact problem of the type shown
in Fig. 5, one could use either Eq. (29) or Eq. (31) in enforcing
global equilibrium in the x1 direction as required to calculate the
constant B.

Furthermore, in enforcing global equilibrium, i.e., Eq. (29) one
can use the current (deformed) configuration instead of the
reference (undeformed) one. In the latter case the global equili-
brium will take the following form:Z h

0
σ11ð0; y2Þ dy2þ

Z L0

0
σ21ðy1;0Þ dy1 ¼ 0; ð32Þ

where L and L0 are lengths over which the shear stresses acting at
the bottom surface of the layer vanish when the loading displace-
ment U is applied over a finite length instead of the entire layer.

Also in Eq. (26d), λ is defined as λ¼ f ðx2 ¼HÞ, which is the
principal stretch ratio for material points at the top surface of the
polymer layer.

Enforcement of the conditions in Eqs. (26) and (27) results in
the following conditions on f ðx2Þ and gðx2Þ:
x2 ¼ 0-y1ðx1;0Þ ¼ x1-f ð0Þ ¼ 1; ð33aÞ

x2 ¼ 0-y2ðx1;0Þ ¼ 0-gð0Þ ¼ 0; ð33bÞ

x2 ¼H-y1ðx1;HÞ ¼ λx1-f ðHÞ ¼ λ; ð33cÞ

x2 ¼H -y2ðx1;HÞ ¼ h- gðHÞ ¼ h; ð33dÞ

x2 ¼H -σ12ðx1;HÞ ¼ 0 -f 0ðHÞ ¼ 0: ð33eÞ
For physically admissible kinematics under compression, y1ðx1; x2Þ
is expected to increase with x2 for a fixed x1. Therefore since
y1 ¼ x1f ðx2Þ, the function f ðx2Þ must monotonically increase with
x2 consistent with the deformation profile shown in Fig. 2. In light
of the above observation and in light of Eq. (24) and conditions
(33c) and (33e) above, it can be concluded that the constant A
must be negative. With the above in mind let

A¼ �α2; ð34Þ
where α is any real number.

Then Eq. (24) will yield to a general solution which under the
boundary conditions (33a) and (33c) above takes the form

f ðx2Þ ¼ cos ðαx2Þþ
λ� cos ðαHÞ
sin ðαHÞ

� �
sin ðαx2Þ: ð35Þ

Enforcement of condition (33e) in combination with the above
solution for f ðx2Þ yields
λ¼ secðαHÞ: ð36Þ
By substituting λ in (35) with (36), f ðx2Þ can be further simplified
to

f ðx2Þ ¼ cos ðαx2Þþ tan ðαHÞ sin ðαx2Þ: ð37Þ
Since λ represents the principle stretch ratio at top surface of the
layer, under compression, λ must be greater than 1 due to
extensional effects in x1 direction caused by compression along
x2 direction. As a result the phase angle αH appearing in the above
equation must be restricted to the interval 0rαHrπ=2. Also by
combining Eq. (37) with boundary condition (33b) and using
fg0 ¼ 1 we obtain a general expression for gðx2Þ as follows:

gðx2Þ ¼
cos ðαHÞ

α
log

1þ sin ðαHÞ
1� sin ðαHÞ

�

� log
1þ tan ðαHÞ� tan

αx2
2

� �� �
cos ðαHÞ

1� tan ðαHÞ� tan
αx2
2

� �� �
cos ðαHÞ

1
CA; ð38Þ

Enforcing condition (33d) the following non-linear equation in α is
obtained:

H�U ¼ h¼ cos ðαHÞ
α

log
1þ sin ðαHÞ
1� sin ðαHÞ

�

� log
1þ tan ðαHÞ� tan

αH
2

� �� �
cos ðαHÞ

1� tan ðαHÞ� tan
αH
2

� �� �
cos ðαHÞ

1
CCA; ð39Þ

when dividing the above equation by H the following normalized
form for αH is obtained:

1�U
H
¼ h
H
¼ cos ðαHÞ

αH
log

1þ sin ðαHÞ
1� sin ðαHÞ

�

� log
1þ tan ðαHÞ� tan

αH
2

� �� �
cos ðαHÞ

1� tan ðαHÞ� tan
αH
2

� �� �
cos ðαHÞ

1
CCA: ð40Þ

With the aid of the above equations, the normalized integration
constants αH and AH2 are calculated and reported in Table 1 for
various U/H ratios.

2.7. Normalization

In order to be able to generate a class of self-similar solutions,
independent variables defined in previous sections, i.e., length (L)

Fig. 5. Schematic of the right hand side symmetric domain used in enforcing global
force equilibrium in the x1 direction. In doing so, the 1st Piola–Kirchhoff stresses
are employed in enforcing equilibrium in the reference or undeformed state.
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and modulus (C), need to be normalized based on characteristic
quantities LC and CC respectively.

By letting LC ¼H and CC ¼ C1 respectively a normalized pres-
sure P̂ and the Cauchy stress components σ̂11; σ̂22; σ̂12 are
obtained as follows:

P̂ ¼ P
Cc

¼ Ĉ2x̂
2
1ðf̂

0Þ2þðĈ1� Ĉ2Þ
2

Âx̂21 f̂
2

þðĈ1þ Ĉ2Þ
2

1

f̂
2þ Ĉ2 f̂

2þ B̂; ð41Þ

σ̂11 ¼
σ11

C c
¼ � P̂þ Ĉ1ðf̂

2þðx̂1 f̂
0Þ2Þþ Ĉ2

f̂
2 ; ð42aÞ

σ̂22 ¼
σ22

Cc
¼ � P̂þ Ĉ2ðf̂

2þðx̂1 f̂
0Þ2Þþ Ĉ1

f̂
2 ; ð42bÞ

σ̂12 ¼
σ12

Cc
¼ ðĈ1� Ĉ2Þx̂1

f̂
0

f
; ð42cÞ

where henceforth the “hat” shall represent normalized quantities.
The integration constant B shall be determined next.

2.8. On the integration constant B

The integration constant B can be calculated using Fig. 5 in
conjunction with Eqs. (29) or (32), i.e.,Z H

0
T11ð0; x2Þ dx2 ¼ �

Z L

0
T21ðx1;0Þ dx1: ð43Þ

By combining Eqs. (20a) and (20c) with Eqs. (25), (37) and (38) and
evaluating them at x1 ¼ 0 and x2 ¼ 0 respectively one arrives at

T11ð0; x2Þ ¼
1
f
ððC2�C1Þ

2
1

f 2
þðC1�C2Þf 2�BÞ; ð44aÞ

T21ðx1;0Þ ¼ ðC1�C2Þα tan ðαHÞx1: ð44bÞ
By integrating (44a) and (44b) from 0 to H and 0 to L respectively
and using Eq. (43) the constant B can be calculated as follows:

B¼ μ
n cos ðαHÞ

�1
4

1
2
sin ð2αHÞþn cos 3ðαHÞ

� ��

þ tan ðαHÞ 1þ1
2
α2L2

� ��
; ð45Þ

with μ being defined as the shear modulus consistent with Eq. (16)
and n introduced as

n¼ log
2 sin

αH
2

� �

cos
αH
2

� �
� sin

αH
2

� �þ1

0
BB@

1
CCA: ð46Þ

As mentioned in Section 2.6 and indicated in Eq. (45), in order to
calculate the constant B, one needs to know the length L, over

which the shear stress acting at the bottom surface of the layer
vanishes when the loading is applied over a finite length rather
than the entire length of the layer.

While in the analytical model developed in this work, the
displacements u1 and u2 are independent of the constant B, the
stress component σ22 and pressure P do depend on B, consistent
with Eqs. (18c) and (25) respectively. Thus, in the stress compar-
ison studies presented later on in this work, the constant B is
calculated using large deformation finite element results. As
discussed elsewhere [2], in calculating the constant B which
controls the built up pressure P and σ22 stress component and
thus the probe force resultant F one may need to either conduct
specific finite element studies through which the length L can be
determined or develop approximate empirical methods that yield
appropriate pressure outcomes.

While such efforts are beyond the scope of this work, in
understanding the effects on the shear stress of the finite probe
length, linear and non-linear finite element models simulating
conditions similar to those present in the sensor layer during
testing were carried out. For example, shear stress contours
obtained from linear simulations using the in-house DENDRO
software are shown in Fig. 6. In the above figure, three different
cases are reported. In Fig. 6a, the half length L of the contact probe
is taken to be comparable to the layer thickness H. In Fig. 6b, L is
taken to be about half the height H of the layer whereas in Fig. 6c L
is taken to be over three times the layer height. In all cases, the
areas of zero shear stress are shaded in black whereas the
maximum shear stress values are represented by the red shaded

Table 1
The constant α obtained by solving the nonlinear equation (39) for different layer
compression levels.

%U=H αH AH2ð�10�3Þ

5 0.007745108450011 0.059986704902432
10 0.010949428377488 0.119889981793739
15 0.013402082218189 0.179615807783098
20 0.015461483663554 0.239057477078347
25 0.017265407642140 0.298094301049266
30 0.018883597411389 0.356590251195417
40 0.021710142543939 0.471330289278150

Fig. 6. In-plane shear stress contours developed in a deformable layer, fixed along
its bottom surface and subjected to a uniform displacement in the layer contact
probe region L. The results are presented for qualitative purposes and were
obtained using linear finite elements with the aid of the in-house DENDRO
software. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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zones. In all three simulations, the shear stress at the symmetry
plane is zero as expected. It then increases to a maximum in a
region directly below the corner of the contact probe and then it
diminishes again to zero at a distance about two times the
characteristic length which is smaller of the two lengths present
in the problem, i.e., the layer height H or the contact probe half
length L. In order to further understand the shear stress effects in
adjusting the infinite layer stress solutions, non-linear finite
element models using a Mooney–Rivlin material were also carried
out with a contact probe being a fourth of the layer thickness. The
Cauchy shear stress acting along the fixed bottom surface was then
extracted as needed to establish the respective profiles at different
layer compression levels. The resulting shear stress profiles are
shown in Fig. 7. As shown, for all U/H levels, the shear stresses are
zero at the symmetry plane. Consistent with the analytical model,
the stresses rise monotonically with x1 reaching a peak value at
distances from the symmetry plane of approximately 2 to 3L. The
stresses then fall following what appears to be a Weibull distribu-
tion function. For this study, the importance of the profiles
reported in Fig. 7 is in identifying an appropriate length L over
which the known analytical solutions need to be integrated in
enforcing force equilibrium associated with Eq. (43). This is an
important aspect of the development of the capacitance model
since during experiments the applied force capacitance change
relations are reported. The proper estimation of the length over
which the analytical shear stress predictions are integrated leads
to a relevant value B which in turn controls the pressure and thus
the actual value of the normal stresses developed in the layer, and
thus the related contact force F.

3. Finite element model development

A non-linear kinematics and material finite element model is
developed in parallel to the development of the analytical model
for comparison and validation purposes. In doing so, the commer-
cial Finite Element software, Abaqus was used. Abaqus provides
state-of-the-art capabilities in modeling hyperelastic materials
such as rubber and other isotropic elastomers and offers advanced
computational capabilities to solve related models [40]. As will be
discussed later on in this section, special care must be given in
enforcing incompressibility associated with the behavior of elas-
tomeric materials.

In accordance with the Abaqus documentation [41], the stan-
dard or explicit solvers can be used in obtaining Abaqus solutions.
More details regarding each of the above solvers and their
differences can be found in the Abaqus user's manual [41].

In this work, Abaqus/standard was used to solve problems
associated with applied normalized deformation U/H of up to 10%.

However, for larger applied deformations, i.e., U=H ¼
15%;20%;25%;30%;40% the Abaqus/explicit solver was used as
needed to handle numerical difficulties arising due to material
incompressibility and large deformations.

3.1. Material definition

Consistent with the analytical model, the same Mooney–Rivlin
material model employed in the development of the analytical
model is also used in defining the material used in the Abaqus
finite element studies. An important aspect of the material defini-
tion however is that while Abaqus/standard enforces incompres-
sibility for hyperelastic materials through the use of special hybrid
elements, Abaqus/explicit assumes that the material is nearly
incompressible [38], thus allowing a small but negligible degree
of compressibility for numerical stability and solution conver-
gence. For example, as discussed in [41], an incompressible
material is associated with an infinite wave speed thus resulting
in an Abaqus/explicit time increment of zero that does not allow
for the advancement of the numerical solution. Therefore, a
hyperelastic material definition exhibiting small compressibility
must be used. In doing so, the bulk behavior of the model may
become softer than that of the actual model material [41]. One can
control the material incompressibility through the ratio of the
initial bulk modulus, K0, to its initial shear modulus, μ0. One can
also control the material compressibility through Poisson's ratio, ν,
which can be expressed as follows:

ν¼
3
K0

μ0
�2

6
K0

μ0
þ2

; ð47Þ

where K0 and μ0 are the bulk and shear modulus respectively and
are defined previously in Eq. (16). For illustrative purposes Table 2
shows the value of Poisson's ratio for typical ratios of bulk and
shear moduli.

The default Abaqus/explicit value for the bulk to shear modulus
ratio is K0=μ0 ¼ 20, corresponding to Poisson's ratio of 0.475. Since
typical unfilled elastomers have ratios in the range of 1000–10,000
(ν¼ 0:4995 to ν¼ 0:49995) and filled elastomers have ratios in the
range of 50–200 (ν¼ 0:490 to 0.497), this default provides
appreciably more compressibility compared to most elastomer
behavior. However, if the elastomer is relatively unconfined, this
softer modeling of the material's bulk behavior usually provides
quite accurate results [41].

Instead of accepting the Abaqus/explicit default value, one has
the option of defining the material compressibility. When doing
so, one should be aware that when using a value for the ratio k0=μ0
which is larger than 100, high frequency noise is then introduced
into a dynamic solution which then requires the use of excessive
small time increments as discussed in [41].

Thus, in determining the shortest time step for quasi-static
analysis in Abaqus/explicit, frequency analysis was carried out on
the polymeric model used in the study. The study yielded a

Fig. 7. Profiles of the Cauchy shear stress acting along the fixed edge of a soft
polymeric layer subjected to uniform displacement along the contact probe length
L. A Mooney–Rivlin material model was used. The large deformation solutions were
obtained for different U=H levels using the Abaqus software.

Table 2
Poisson's ratio for typical values of K0=μ0 [41].

K0

μ0

ν

10 0.452
20 0.475
50 0.490
10 0 0.495
1000 0.4995
10,000 0.49995
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fundamental frequency for the polymeric layer to be 3.6177 Hz
corresponding to a period of 0.2764 s which is then used as the
shortest step time in obtaining the Abaqus/explicit solutions
reported in this study.

3.2. Geometry definition and meshing

The finite element solution domain selected for this study is
shown in Fig. 8a. As shown the domain has an aspect ratio of
height to length H=L¼ 1=4. The above domain is meant to
represent the right symmetric half of the compressed layer. This
domain was discretized using 4-noded elements. A typical mesh is
shown in Fig. 8b. In the above mesh which was created and then
processed in Abaqus, there are 7500 quadrilateral, plane-strain,
reduced, hybrid elements designated as CPE4RH in Abaqus/stan-
dard and 7500 quadrilateral, plane-strain, reduced, elements
designated as CPE4Rþ in Abaqus/explicit. The mesh in Abaqus/
standard also contains 15,201 nodes with a 15,402 displacement
degrees of freedom and 7500 additional pressure degrees of
freedom (total of 22,902 degrees of freedom) but the mesh in
Abaqus/explicit consists of 7701 nodes which correspond to
15,402 degrees of freedom. More specifics of the size of the
problem in Abaqus/standard and Abaqus/explicit are included in
Fig. 8. Symmetry conditions were applied along the x1 ¼ 0 plane.
Fixed displacement conditions were applied along the rigid sur-
face at the bottom of the layer. Free traction conditions were
enforced in the x1 direction on the top surface while a uniform
displacement in the negative x2 direction was applied to all nodes
on the top surface of the mesh.

A Mooney–Rivlin material model was adopted as discussed
earlier with the material constants C1 ¼ 1;364:3 Pa, C2 ¼
87;863:8 Pa given as a material input. It may be important to
state that the sign of C10 is taken to be positive for the Abaqus
simulations since in Abaqus the Mooney–Rivlin stress law includes
a negative sign ahead of the respective C10 constitutive term [41]
whereas the same term is used with a positive sign in the

analytical model consistent with Eq. (17). Incompressibility con-
dition was also enforced by choosing Poisson's ratio to be close
to 0.5.

The Abaqus models were run using an Intel (R) Core (TM)2 Duo
CPU P8600 at 2.4 GHz with typical run execution times of the
order of 4000 s. An incremental and iterative scheme was used in
obtaining the solutions at all deformation levels reported.

For numerical verification purposes the same FE models solved
in Abaqus were also solved using the COMSOL multiphysics [42].

4. Results and discussion

The aim of the broad parametric studies presented below is
twofold; (a) the studies allow us for the comparison of the
analytical model predictions to independent estimates obtained
using the Method of Finite Elements over a broad range of layer
compression and (b) the parametric studies allow us for the
determination of the stress and deformation fields induced in
the layer by the application of a uniform displacement at the top
layer surface under large deformation condition. The applied
displacement loading is meant to simulate sensor contact at the
top layer surface. As such, the results presented below are
sequentially organized consistent with the level of layer compres-
sion. Results for two layer compression simulations are presented,
i.e., U=H ¼ 0:05 and 0.4. Within each layer compression simulation,
the reported results include Cauchy stress profiles along the x1 at
various fixed x2 positions and the same stress plotted along the x2
at fixed various x1 positions. In addition, the results include
displacement profiles along the x1 and x2 directions as needed to
fully explore the model capabilities and elucidate the large
deformation mechanics dominating the layer under consideration.
The figures presented in this study include both analytical model
predictions plotted in solid lines and finite element results
denoted by discrete points presented in the same plots.

In all finite element simulations, the geometry was normalized
with respect to the layer thickness H which was used as the
characteristic length in the model. In addition, the applied dis-
placement was normalized with respect to H and as such it was
imposed as a displacement condition using the ratio of the applied
displacement U over the layer thickness H as indicated above.
However, as mentioned earlier in Section 3, the finite element
simulations were initially carried out using a dimensional
Mooney–Rivlin material with constants C01 ¼ 1364:3 Pa and
C10 ¼ �87;863:8 Pa. The non-dimensionilization of the finite ele-
ment stress results with respect to the constant C01 was then
performed after the extraction of the initial dimensional data as
needed to establish consistency between the reported finite
element data and those obtained using the analytical model. It
may also be important to state that the results obtained using the
analytical model developed earlier in this work were non-
dimensionalized using the non-dimensionilization process dis-
cussed earlier in this study. In light of all of the above, the
simulation results shall be discussed next.

Figs. 9–11 report on stress and deformation results obtained for
a layer subjected to a normalized displacement U=H ¼ 0:05 applied
along the top layer surface. More specifically, Fig. 9 shows profiles
of the non-dimensional Cauchy stress components plotted against
the normalized x1=H coordinate for various fixed values of x2=H.
Fig. 9a reports on the normalized σ11=C1 Cauchy stress compo-
nent, Fig. 9b on the normalized σ22=C1 shear component and
Fig. 9c on the normalized σ12=C1 Cauchy stress component. In all
figures, the solid lines represent analytical model predictions
whereas the discrete points correspond to finite element results.
Each set of results reported in solid line and related FE points were
obtained at a fixed normalized layer depth as measured by the

Fig. 8. (a) A schematic of the domain within which a finite element solution is
obtained. The highlighted in green right half of the domain is the finite element
model region discretized using four-noded hybrid elements for the Abaqus/
standard (CPE4RH) solver or four-noded elements (CPE4R) when using the
Abaqus/explicit solver. (b) A typical finite element mesh with geometric symmetry,
displacement and traction conditions shown. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
paper.)
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parameter x2=H as indicated in the accompanied schematic in
Fig. 9d. As shown, the analytical predictions for all three stress
components are in excellent agreement with the finite element
results. Despite the relatively modest level of layer compression, i.
e., 5% thickness reduction, the observed agreement between the
analytical and finite element results can be seen as a validation of
both the analytical and the numerical finite element models
developed in this study. As discussed later on in this section,
further validation of the two modeling approaches is established
at much higher layer compression reaching up to a severe 40%
thickness reduction.

It may also be important to note that under the applied layer
compression condition, both normal Cauchy stresses, i.e., σ11 and
σ22, are predicted to be in compression over the entire range of the
reported data, i.e., with x1=H varying from 0 to 2 and at all
normalized layer depths reported. Higher compression levels
appear to exist in the vicinity of the symmetry plane with σ11=C1

being close to �93 at a material point at the bottom of the layer on
the symmetry axis and σ22=C1 being equal to �98 at the same
point. As shown in Fig. 9c, all shear stresses at the symmetry plane
vanish consistent with symmetry condition and increase linearly
with x1=H with the higher rate of increase associated with material
points attached to the rigid substrate. Again, as expected, all shear
stresses vanish at the friction free top surface.

In Fig. 10, the normalized Cauchy stress component profiles at
fixed distances from the symmetry plane as measured by x1=H are
plotted against the normalized x2=H coordinate for top surface
compression U=H¼ 0:05 as mentioned earlier. Again, the solid
lines represent analytical model predictions and discrete points
those obtained numerically using finite elements. Consistent with
the simulations presented in Fig. 9, the results shown in Fig. 10

maintain the remarkable agreement between the analytical and FE
model predictions. While the normalized σ11=C1 stress appears to
exhibit a non-linear profile with x2=H, the σ22=C1 is shown to
remain almost constant along the layer depth whereas the shear
stresses appear to linearly decrease from a maximum at the
bottom of the layer to zero at the top of the layer.

The profiles of the displacement components u1=H and u2=H
plotted along horizontal lines of fixed x2=H are shown in Figs. 11a
and 11c. As expected, the normalized u2=H displacement compo-
nent is shown to be independent of x1 as shown in Fig. 11c, it is
also predicted to be equal to the applied displacement for material
points on the top layer surface and zero for points attached to the
rigid foundation. On the contrary, the normalized u1=H compo-
nent, the component that is relevant to the pressure sensor design,
is shown to be zero on the symmetry axis and then increases
linearly with x1=H for points belonging to the same horizontal line
at fixed distance x2=H from the rigid bottom. As will be discussed
later on, in [2] in the pressure sensor capacitance model develop-
ment, higher u1 components lead to higher sensor capacitance
change which may increase sensor sensitivity. Of course, other
sensor design issues at play often necessitate minimizing the
distance between electrodes limiting the electrode placement to
distances from the axis of symmetry to x1o0:2H as will be further
investigated in [2].

The u1=H and u2=H displacement component profiles plotted
against x2=H along vertical lines of constant x1=H are shown in
Figs. 11b and 11d respectively. Fig. 11b indicates that the u1=H
exhibit a non-linear profile when plotted along a vertical line. As
expected, higher values for u1=H are predicted for vertical lines
located further from the symmetry plane as needed for conserva-
tion of mass. As discussed above, the trends in u1=H in either x1=H

Fig. 9. Profiles of non-dimensional Cauchy stress components (a) σ̂11, (b) σ̂22, (c) σ̂12 plotted against the non-dimensional reference coordinate x̂1 at different x̂2 cross
sections as indicated, for an applied compressive normalized displacement, U=H¼ 0:05. The discrete points represent Abaqus/standard, finite element results whereas the
solid lines represent the analytical model predictions. (d) Schematic of the polymeric layer subjected to a compressive uniform displacement U. The horizontal dash lines
represent the paths of the reported stress profiles.

K.M. Kalayeh, P.G. Charalambides / International Journal of Non-Linear Mechanics 76 (2015) 120–134 129



reported in Fig. 11a or x2=H reported in Fig. 11b are of relevance to
pressure sensor design and thus, the profiles shown in the latter
figure could assist in the development of optimal designs. The
profile of u2=H along vertical lines reported in Fig. 11d further
reinforces our understanding of its independence of x1=H as
assumed in the analytical model development. As shown, the
reported profiles for all x1=H lines coincide forming a single
profile. Zero u2=H displacements are predicted for all points along
the rigid bottom whereas points on the top surface experience
u2=H equal to the applied displacement. A non-linear profile is
exhibited by the u2=H component between points on the bottom
rigid surface and points on the top layer surface.

Stress and displacement profiles similar to those presented in
Figs. 9 and 11 are also obtained for the most severe layer compres-
sion case of U=H ¼ 0:40 considered herein and reported in Figs. 12
and 13. More specifically, Fig. 12 shows the normalized Cauchy
stress components σ̂11; σ̂22; σ̂12, and the normalized displacement
components û1; û2 extracted along horizontal paths plotted against
the non-dimensional reference coordinates x̂1 at different x̂2 cross
sections. At the same time, Fig. 13 shows the normalized displace-
ment components û1 and û2 extracted along vertical paths and
plotted against the normalized reference coordinates x̂2 at different
x̂1 fixed vertical paths. While a broad array of results similar to
those reported for the 5% layer compression case were also
obtained for the 40% compression, in an effort to limit the extend
of this paper, only selected but still sufficiently comprehensive
results are included for the latter case asreported in Figs. 12 and 13.

As evident by the results reported in Figs. 9–13, the stress and
deformation profile trends obtained for the higher levels of layer

compression are shown to be similar to the corresponding trends
exhibited and discussed for the 5% layer compression. Overall, the
analytical model predictions are shown to be in remarkable
agreement with the finite element results for all layer compression
levels considered with slight deviations appearing in the most
severe case of 40% layer compression. Again, by inspection one
recognizes that higher compressive stresses develop with increas-
ing layer compression with the normalized σ11=C1 at the bottom of
the layer on the symmetry plane being close to 93 for the 5% layer
compression case (see Fig. 9a), increasing to an astonishing high
value of about 3500 for the severe 40% layer compression case as
shown in Fig. 12a.

An important finding of the above discussed parametric studies
is the observed agreement between the analytical and finite
element models for modest as well as severe layer compression
levels. Such a finding reinforces confidence in the analytical model
capabilities which can be used to develop a related sensor capaci-
tance model and thus guide the optimal design of pressure sensors.

5. On the development of a sensor capacitance model

The layer compression model developed above is employed in a
separate study [2] in the development of an all elastomer tactile
MEMS sensor for the detection of contact forces. A schematic of the
MEMS pressure sensor developed in [1] is shown in Fig. 14. As
shown, through a special micro-fabrication process, conductive
layers are embedded into an otherwise soft polymeric layer of
initial thickness H. In [1], pressure sensor devices of layer thickness

Fig. 10. Profiles of the non-dimensional Cauchy stress components (a) σ̂11, (b) σ̂22, (c)σ̂12 plotted against the non-dimensional reference coordinate x̂2 at different x̂1

locations. The results were obtained for an applied compressive normalized displacement, U=H¼ 0:05. The discrete points represent Abaqus/standard, finite element results
whereas the solid lines represent the analytical model predictions. (d) Schematic of the polymeric layer subjected to a compressive uniform displacement U. The vertical
dash lines represent the paths of the reported stress profiles.
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H ¼ 450 μm were developed and tested. Upon contact, the soft
polymeric layer compresses to a smaller thickness h while at the
same time displacing material symmetrically outwards from the
center of contact consistent with Fig. 15a. Thus, the initial electrode
spacing D increases to a larger spacing d while also the electrode
layer thickness reduces from an initial thickness T to a current
thickness t. Consistent with the flowchart included in the Fig. 15b,
the capacitance C which is proportional to the initial electrode
overlapping area Ao and inversely proportional to the current
electrode distance d changes during contact. Such changes can then
be measured with proper sensor calibration thus identifying the
magnitude of the applied contact force as a function of capacitance
change. Thus, in doing so and consistent with Fig. 15, the relation-
ship between the applied displacement U=H and the resulting
contact pressure or associate contact force F needs to be established
using the analytical model developed earlier in this study.

5.1. Force–displacement curves

The total force acting in the sensor contact region can be
calculated using the contact surface stresses predicted by the
analytical model. Particularly, under plane strain conditions for a
sensor of width w, the total force acting over an undeformed area
of length 2LC �w is given by

F ¼ 2
Z Lc

0
T22ðx1; x2 ¼HÞw dx1; ð48Þ

where F is the total force applied to the contact area, T22ðx1; x2 ¼HÞ
is the 1st Piola–Kirchhoff stress component normal to the top
surface of the layer, w is the layer width, Lc is half of the length of
contact length and x1 is a reference coordinate. The same force can
also be obtained by integrating the corresponding Cauchy stress

component σ22 over the deformed area. Consistent with the above
configuration, if initial contact is made over the 2Lc �w area and
provided that contact is maintained over the deformed area
2L0c �w, then the total force is given by

F ¼ 2
Z L0c ðUÞ

0
σ22ðy1; y2 ¼HÞw dy1: ð49Þ

With the aid of the analytical model stress predictions the above
force displacement equation takes the form

F ¼ 2wλL �μ0

6
AL2λ2þμ

2
1

λ2
�B

� �
ð50Þ

and it can be normalized as

F̂ ¼ F

μ0H
2 ¼ 2ŵλ̂L̂ � μ̂0

6
ÂL̂

2
λ̂
2þ μ̂0

2
1

λ̂
2� B̂

 !
ð51Þ

where C1, C2 are the Mooney–Rivlin material constants,
μ0 ¼ C1�C2 is the shear modulus of the polymeric layer, λðαÞ is
a function given by Eq. (36), A is a constant which is equal to �α2,
Eq. (34), and α is a constant that solely depends on the layer
compression level U=H and is calculated numerically by solving a
non-linear expression given by Eq. (39). A list of α values for
various U=H ratios is given in Table 1. As discussed earlier on, in
Section 2.7, “hat” quantities are non-dimensionalized with their
characteristic values.

Typical profile of normalized contact force plotted against U=H
is presented in Fig. 16. As shown, a highly non-linear relationship
exists between the uniform layer compression U=H and the
normalized contact force applied over a specified initial length L.

Fig. 11. Profiles of the non-dimensional displacement components extracted along horizontal and vertical paths. (a) û1 plotted against x̂1 at different x̂2-fixed horizontal
paths. (b) û1 plotted against x̂2 at different x̂1-fixed vertical paths. (c) û2 plotted against x̂1 at different x̂2-fixed horizontal paths. (d) û2 plotted against x̂2 at different
x̂1-fixed vertical paths. The discrete points represent Abaqus/standard, finite element results whereas the solid lines represent the analytical model predictions. The reported
results were obtained for an applied compression U=H¼ 0:05.
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The value of the force resultant F̂ clearly depends on the
constant B̂. The sensor model calibration leading to a relevant
constant B̂ is discussed in great detail in [2].

6. Conclusions

The large deformation mechanics of a soft, planar and infi-
nitely long elastomeric layer subjected to a uniform compressive
displacement have been established both analytically and
numerically using the Method of Finite Elements (FEM). An
incompressible Mooney–Rivlin material model was employed
with the layer subjected to the uniform displacement under
plane strain conditions. In the analytical model development,
the Cauchy stress tensor was expressed in terms of an indepen-
dent spatially varying pressure term, the Finger deformation
tensor and its inverse each multiplied by a Mooney–Rivlin

material constant. Material incompressibility along with geo-
metric boundary conditions, local stress and global force equili-
brium have been used in establishing explicit forms of the large
deformation kinematic equations. Thus analytical expressions for
the true or Cauchy stresses and the 1st Piola–Kirchhoff stresses
have been obtained. Similarly, analytical expressions for the in-
plane displacement components have also been developed.
Analytical stress and deformation estimates in the region close
to the symmetry plane along with their finite element counter-
parts are reported for relatively as well as severe applied
deformation of up to 40% of the original layer thickness. The
analytical predictions are found to be in remarkable agreement
with their finite element counterparts. The relevance of the
analytical model to the development of a tactile sensor capaci-
tance model is discussed. Contact force profiles plotted against
the applied displacement over a finite contact probe length are
also reported.

Fig. 12. Profiles of the non-dimensional (a) Cauchy stress component σ̂11, (b) Cauchy stress component σ̂22, (c) Cauchy stress component σ̂12, (d) displacement component
û1, (e) displacement component û2, extracted along horizontal paths plotted against the non-dimensional reference coordinate x̂1 at different x̂2 cross sections as indicated
and consistent with schematic of the polymeric layer subjected to a compressive uniform displacement U in (f). The discrete points represent Abaqus/explicit, finite element
results whereas the solid lines represent the analytical model predictions. The results are obtained for applied compressive normalized displacement U=H¼ 0:40.

K.M. Kalayeh, P.G. Charalambides / International Journal of Non-Linear Mechanics 76 (2015) 120–134132



The model developed in this work forms the foundation for the
development of a robust capacitance model for pressure tactile
sensor applications.
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