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Abstract: As one of the main failure modes, embedded cracks occur in beam structures due to periodic loads. Hence it is useful to 

investigate the dynamic characteristics of a beam structure with an embedded crack for early crack detection and diagnosis. A new 

four-beam model with local flexibilities at crack tips is developed to investigate the transverse vibration of a cantilever beam with an 

embedded horizontal crack; two separate beam segments are used to model the crack region to allow opening of crack surfaces. Each 

beam segment is considered as an Euler-Bernoulli beam. The governing equations and the matching and boundary conditions of the 

four-beam model are derived using Hamilton’s principle. The natural frequencies and mode shapes of the four-beam model are 

calculated using the transfer matrix method. The effects of the crack length, depth, and location on the first three natural frequencies and 

mode shapes of the cracked cantilever beam are investigated. A continuous wavelet transform method is used to analyze the mode 

shapes of the cracked cantilever beam. It is shown that sudden changes in spatial variations of the wavelet coefficients of the mode 

shapes can be used to identify the length and location of an embedded horizontal crack. The first three natural frequencies and mode 

shapes of a cantilever beam with an embedded crack from the finite element method and an experimental investigation are used to 

validate the proposed model. Local deformations in the vicinity of the crack tips can be described by the proposed four-beam model, 

which cannot be captured by previous methods. 
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1  Introduction 
 

Beam structures are one of the most widely used types of 
components or structures in industry and play an important 
role in system performance. As one of the major failure 
modes of beam structures due to periodic loads, embedded 
cracks in them can significantly affect their dynamic 
characteristics, and cause catastrophic failures and 
accidents in industry. Hence it is important to investigate 
the dynamic characteristics of a beam structure with an 
embedded crack for early crack detection and diagnosis for 
industrial maintenance purposes.  

It is well known that dynamic characteristics of beam 
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structures are correlated with their modal parameters, such 
as natural frequencies, mode shapes, and damping ratios, 
which can be changed when there are cracks in them[1–2]. 
An investigation on the changes in the dynamic 
characteristics makes it possible to detect and diagnose 
cracks in beam structures, and different methods have been 
presented[1–4]. Modeling and simulation methods can 
provide an accurate and comprehensive method for 
predicting the dynamic characteristics of cracked beam 
structures, which can also provide some guidance to early 
crack detection and diagnosis in these structures. Much 
research work has been conducted in this area, and many 
methods have been developed to model cracks in beam 
structures. A crack has been modeled by a rotational spring, 
an elastic hinge, a cut-out, a pair of concentrated couples, 
or a zone with a reduced elastic modulus[5]. The most 
popular models of cracks in beam structures are rotational 
spring models.  

YUEN[6] investigated the relationship between the crack 
location and size and the changes in the eigenvalues and 
eigenvectors of a cracked cantilever beam using a finite 
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element(FE) method. RIZOS and ASPRAGATHOS[7] 
proposed a method to model a crack as a localized 
flexibility and used measured amplitudes of a mode shape 
of a cantilever beam to identify the location and size of an 
edge crack. Their method requires amplitude measurements 
at two locations along the beam. NANDWANA and 
MAITI[8] modeled an edge crack as a rotational spring and 
used a semi-analytical method to identify the location and 
size of a crack in a cantilever beam based on changes in its 
natural frequencies. KISA[9] investigated the effects of 
cracks on the dynamic characteristics of a cantilever 
composite beam using FE and component mode synthesis 
methods. The crack sections divide the beam into several 
parts, which are connected by rotational springs. NAHVI 
and JABBARI[10] proposed an experimental method and a 
FE method to identify the location and size of an edge 
crack in a cantilever beam based on changes in its natural 
frequencies and mode shapes. LIN and CHANG[11] 
developed an analytical method to investigate the dynamic 
response of a cantilever beam with an edge crack subjected 
to a concentrated moving load. The crack is also modeled 
as a rotational spring in their model. YANG and CHEN[12] 
proposed a theoretical investigation on the free vibration 
and elastic buckling of a cantilever beam with edge cracks 
based on Euler-Bernoulli beam theory. They also used a 
rotational spring model to describe the effects of the cracks. 
SEYEDPOOR[13] developed a two-stage method to identify 
the locations and extent of multiple damage in beam 
structures based on numerical results from a FE model. The 
effect of a crack is simulated through a relative reduction of 
the elastic modulus of each element. LU, et al[14], proposed 
a two-step approach to identify the location and size of an 
edge crack in a cantilever beam using changes in its mode 
shape curvatures and a response sensitivity analysis. They 
used a localized stiffness reduction to model the effect of 
the crack in the beam.  

OSTACHOWICZ and KRAWZUK[3] investigated a 
continuous model of a cracked cantilever beam. Two edge 
cracks were modeled by two rotational springs; the model 
was used to study the effects of two edge cracks on the 
natural frequencies of the cracked cantilever beam. 
SHIFRIN and RUOTOLO[15] used a continuous 
mathematical model to calculate the natural frequencies of 
a cantilever beam with an arbitrary number of edge cracks. 
They used massless springs to model the cracks in the beam. 
LIN, et al[16], developed a theoretical model of an 
Euler-Bernoulli beam with an arbitrary number of edge 
cracks using the transfer matrix method. The cracks were 
modeled using the method in Ref. [3]. KHIEM and LIEN[17] 
used a dynamic stiffness matrix method to identify the 
locations and sizes of cracks in a cantilever beam based on 
changes in its natural frequencies. They also used a spring 
model to represent the cracks. CHANG and CHEN[18] 
developed a technique to detect the locations and sizes of 
cracks in a cantilever beam using a spatial wavelet-based 
method. The cracks were also modeled by rotational 

springs. PATIL and MAITI[19] developed a method to 
identify the locations and sizes of cracks in a cantilever 
beam based on changes in its natural frequencies. Their 
analysis is based on an energy method and the 
representation of a crack by a rotational spring. MORADI 
and KARGOZARFARD[20] developed an evolutionary 
algorithm to identify cracks in a cantilever beam based on 
changes in its natural frequencies and some strain energy 
parameters. Each crack was modeled by a rotational spring.  

The above literature shows that most of the previous 
works are focused on edge cracks in a cantilever beam. 
Some researchers have studied a closed, embedded 
horizontal crack or a delamilation in a beam[21–31]. 
MAJUMDAR and SURYANARAYAN[23] developed an 
analytical model of a beam with through-width 
delamilations parallel to the beam surfaces, which are 
arbitrarily located in both the spanwise and thicknesswise 
directions. In their model, three beam segments are used to 
model the beam with a delamilation, and each beam 
segment is considered as an Euler-Bernoulli beam. They 
used continuity of transverse displacements, slopes, 
bending moments, shear forces, and axial displacements 
and forces to describe the effect of the delamination in the 
beam. TRACY and PARDOEN[24] proposed a methodology 
for predicting natural frequencies, mode shapes, and modal 
damping of a composite beam and relating them to a 
delamination based on laminate mechanics. It was assumed 
that there are relative in-plane and out-of-plane motions 
between delaminated sublaminates. The induced 
discontinuity at an end of a delamination is considered as 
an additional degree of freedom. ISHAK, et al[25], 
investigated wave propagation in an infinitely-long beam 
with an embedded horizontal crack, and used a multilayer 
perception network to identify the length, depth, and 
location of the crack. The beam segment containing the 
crack is modeled by a reduced bending stiffness. Some 
studies[26–30] are also focused on modeling of the 
delamination in a laminated material. The matching 
conditions at the junctions are formulated as changes in the 
axial forces and bending moments in Refs. [25–30], which 
cannot describe rotational flexibilities of cross-sections of 
the beam at the crack tips due to the presence of a crack. 
QIAO and CHEN[31] used the model in Ref. [32] to study 
the tip deformations of the delaminations in a flexible joint 
for a clamped-clamped and a simple supported bi-layer 
composite beam with an interface delamination. LI, et al[33], 
proposed an analytical method to calculate the local 
flexibility and rotational spring stiffness cause by a crack in 
a I-beam. They[34] proposed a three-step-meshing method 
for multiple cracks identifcation in a cracked cantilever 
beam. YAZDI and SHOOSHTARI[35] proposed a novel FE 
with a central crack for fracture applications. CHU, et al[36], 
extended the double cantilever beam model to functionally 
graded material according to two-dimensional(2D) theory 
of elasticity. NANDAKUMAR and SHANKAR[37] 
proposed a novel structural damage detection scheme using 
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transfer matrix for the local crack identification in large 
structures. 

 In this paper, a new four-beam model with local 
flexibilities at crack tips is developed to investigate the 
transverse vibration of a cantilever beam with an embedded 
horizontal crack. Such a crack can occur in a layered 
structure prone to delamination. While the beam is assumed 
to be homogeneous here, the methodology developed in 
this work can be extended to laminates with homogeneous 
layers. Two separate beam segments are used here to model 
the crack region so that crack surfaces are allowed to open. 
The proposed model can describe effects of local 
deformations in the vicinity of crack tips, which cannot be 
captured by previous methods in the literature. Each beam 
segment is assumed to be an Euler-Bernoulli beam. 
Compliances at the crack tips are analytically calculated 
partly based on the results in Ref. [38]. The governing 
equations and the matching and boundary conditions of the 
beam segments are derived using Hamilton’s principle. The 
natural frequencies and mode shapes of the cracked 
cantilever beam are calculated using the transfer matrix 
method. The effects of the crack length, depth, and location 
on the first three natural frequencies and mode shapes of 
the cracked cantilever beam are investigated. A continuous 
wavelet transform(CWT) method[39] is used to process the 
mode shapes of the cracked cantilever beam. Sudden 
changes in spatial variations of the wavelet coefficients are 
observed; they can be used to identify the length and 
location of an embedded horizontal crack. Because the FE 
method has been widely used in deformation and vibration 
studies of beams with cracks[40–44], the results from the 
proposed model are verified using commercial FE 
software[45]. An experimental investigation is also 
undertaken to validate the proposed model. This work is a 
first step in modeling and detecting a slant crack in a beam 
structure.  
 
2  Free Vibration Analysis of a Cantilever 

Beam with an Embedded Horizontal 
Crack 

 

2.1  Four-beam model with local flexibilities 
at crack tips 

A uniform Euler-Bernoulli cantilever beam of length L, 
height h, and width b with an embedded horizontal crack of 
length 2a is shown in Fig. 1, where P is an applied force 
used to calculate crack-induced rotational flexibilities of 
cross-sections of the beam at the crack tips, X0 and X3 are 
the positions of the fixed and free ends of the beam in the 
global XY coordinate system, respectively, and X1 and X2 
are the beginning and end positions of the crack, 
respectively. The crack length is 2a and the crack depth 
from the top surface of the beam is h1 with 0<h1<h. It is 
assumed that the center of the crack is located at Xc with 
L2/2<Xc<L–L2/2. The beam is divided into four segments 
of lengths L1, L2, L3, and L4, respectively, with L2=L3=2a, 

as shown in Fig. 1.  
 

 

Fig. 1.  Schematic of a cantilever beam with an embedded 
horizontal crack 

 

A four-beam model with local flexibilities at X1 and X2, 
is developed to describe the cantilever beam with an 
embedded horizontal crack, as shown in Fig. 2, where C1, 
C2, C3, and C4 are compliances at the crack tips; each beam 
segment is assumed to be an Euler-Bernoulli beam. The 
transverse displacement of the ith(i=1, 2, 3, 4) beam 
segment is denoted by Yi(X, T) with Xi1<X<Xi.  

 

 

Fig. 2.  Schematic of a four-beam model with compliances 
C1, C2, C3, and C4 at the crack tips 

 

2.2  Calculation of compliances at the crack tips 
According to the analysis in Ref. [38], the total 

equivalent compliances at X1 and X2 are 
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respectively.  

By moment balance of the right parts of beam segments 
2 and 3 shown in Fig. 3(c), one has 

 

1 1 1 2 2 2,     ,r rM M Pa M M P a= + = +         (3) 

 
where Mr1 and Mr2 are the bending moments at 
cross-sections 2X - , as shown in Fig. 2, of beam segments 
2 and 3, respectively, and P1 and P2 are the shear forces at 
the same cross-sections of beam segments 2 and 3, 
respectively. 

According to the analysis in Refs. [26, 38], by moment 
balance of the right part of the beam in Fig. 3(a) at point B, 
force balance of the right part of the beam in Fig. 3(b) in 
the X and Y directions, and deflection compatibility of the 
beam at cross-section 2X - , which states that the 

https://www.researchgate.net/publication/235898230_New_damage_detection_technique_based_on_governing_differential_equations_of_continuum_mechanics_Part_I_out-of-plane_loading?el=1_x_8&enrichId=rgreq-3487e2e8365de7004c89647a9adac313-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQyNjEwMztBUzoyOTMwNTYwMDg5OTg5MTNAMTQ0Njg4MTQwNTk5OQ==
https://www.researchgate.net/publication/228958773_A_New_Algorithm_for_Crack_Localization_in_a_Rotating_Timoshenko_Beam?el=1_x_8&enrichId=rgreq-3487e2e8365de7004c89647a9adac313-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQyNjEwMztBUzoyOTMwNTYwMDg5OTg5MTNAMTQ0Njg4MTQwNTk5OQ==
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deflections at cross-section 2X -  relative to those at 1X + , 
as shown in Fig. 2, for beam segments 2 and 3 are the same, 
one has 
 

( )

( )( ) ( ) ( )( ) ( )

2 1 1
1 2 1

1 2 1 2

2 3 2 3
1 1 1 2 2 2

2 2 3 3

0,
2 2

,    ,

2 2 2 2
,

2 3 2 3

c

N h h h
M M M N h

N N P P P

M Pa a P a M P a a P a

EI EI EI EI

æ ö- ÷ç- - + + - =÷ç ÷÷çè ø

=- + =

+ +
- = -

     (4) 
 
respectively, where Mc= (P L- -Xc), and I2 and I3 are 
cross-sectional area moments of inertia of beam segments 2 
and 3, respectively. By Eq. (4), the relationships between P1 
and P2, and between M1 and M2, are 

 

32
1 2

2 3 2 3

,  ,
II

P P P P
I I I I

= =
+ +

         (5) 

 

2 3
1 2, .c cI M I M

M M
I I

= =             (6) 

 
Use of Eqs. (4)–(6) in Eq. (3) yields 

 

1 1 1 2

2 2 2 3

.r

r

M M Pa I

M M P a I

+
= =

+
             (7) 

 

 

Fig. 3.  Schematic of moment balance and force  
balance of a cantilever beam 

 
Furthermore, the rotational angles at cross-section 2X + , 

as shown in Fig. 2, relative to those at 1X +  for beam 
segments 2 and 3 are the same, one has 

( ) ( )

( ) ( )

2
1 1 1

1 3
2 2

2
2 2 2

2 4
3 3

2 2

2

2 2
.

2

r

r

a M Pa P a
M C

EI EI

a M P a P a
M C

EI EI

+
- + =

+
- +

        

(8)

 

 
Use of Eq. (7) in Eq. (8) yields 

 

3 3

4 2

.
C I

C I
=                    (9) 

 
By moment balance of beam segment 4 in Fig. 3(b), one 
has 

 

1 2 ,r r rM M M= +               (10) 

 
where Mr is the resultant bending moment at cross-section 

2X + . Equation (10) can be written as 

 

3 4

,rt rbr

rC C C

 
= +                (11) 

 
where r , rt , and rb  are the rotational angle at 
cross-section 2X   relative to that at 2X  , and those for 
beam segments 2 and 3, as shown in Fig. 3, respectively, 
which are the same, i.e., 

 
.r rt rb  = =                (12) 

 
Use of Eq. (12) in Eq. (11) yields 
 

3 4

1 1 1
.

rC C C
= +                (13) 

 
By Eqs. (9) and (13), one has 
 

( ) ( )
32

3 2 3 4 2 3

1 1
,  .

r r

II

C C I I C C I I
= =

+ +
     (14) 

 
Similarly, one has  
 

( ) ( )
32

1 2 3 2 2 3

1 1
,  .

l l

II

C C I I C C I I
= =

+ +
      (15) 

 
It can be seen from Eqs. (2), (14), and (15) that C1>C3 and 
C2>C4; C1 through C4 increase with the crack length and 
depth. 

 
2.3  Calculation of natural frequencies and mode  

shapes of the four-beam model 
By Hamilton’s principle, the equations of motion of the 

four beam segments are(see Appendix A for the derivation) 



 
 
 

CHINESE JOURNAL OF MECHANICAL ENGINEERING 

 

·5·

( ) ( )

( ) ( )

( ) ( )

( ) ( )
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

¶ ¶
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(16) 
 
The boundary conditions are 
 

( ) ( ) ( ) ( )1 1 4 40, 0, 0, 0, , 0.Y t Y t Y t Y L t¢ ¢¢ ¢¢¢= = = =    (17) 

 
The matching conditions at cross-sections X1 and X2 are 
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 (18) 
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The following nondimensional variables are introduced: 
 

1 2
1 2

3 4 1 1
3 4 1 2

32 4
2 3 42 2 2
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i

c
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The equations of motion of the four beam segments in Eq. 
(16) become 
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 (21) 
 
The matching conditions in Eqs. (18) and (19) become 
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    (22) 

 
Let ( ) ( ), exp( j ),i iy x t w x t=  where ω is a natural 

frequency of the four-beam model, and ( )iw x  is the 
corresponding mode shape of the ith beam segment; Eq. 
(21) becomes 
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where 
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The general solution of Eq. (23) for each beam segment is 
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where iA , iB , iC , and iD  are unknown constants 
associated with the ith beam segment. By Eq. (22), one can 
relate the unknown constants associated with the (i+1)th 
(i=1, 2, 3) beam segment to those with the ith beam 
segment: 
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Where entries of matrices 1G , 2G , 3G , and 4G  are 
given in Appendix B. By Eqs. (26) and (27), one has 
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The boundary conditions in Eq. (17) become 
 

( ) ( )0 0,    0 0,w w¢= =              (30) 

 

( ) ( )1 0,    1 0.w w¢¢ ¢¢¢= =              (31) 

 
Applying the boundary conditions in Eq. (30) to Eq. (25) 
yields 
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Applying the boundary conditions in Eq. (31) to Eq. (25) 
yields 
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Eqs. (33) and (34) can be written in the matrix form 
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Substituting Eq. (35) into Eq. (29) yields 
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use of Eqs. (32), (37), and (38) yields 
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Existence of a non-trivial solution of Eq. (39) requires 
 

11 13 12 14

21 23 22 24

det 0,
R R R R

R R R R

æ ö- - ÷ç ÷=ç ÷ç ÷ç - -è ø
          (40) 

 
which is the frequency equation of the four-beam model 
f(ω)=0. The nth natural frequency of the four-beam model 
is the nth positive root of the frequency equation. By Eqs. 
(28), (29), (37), (39), and (40), and assuming 1B  has an 
arbitrary known value, one can obtain all the other 
constants of iA , iB , iC , and iD  in wi(x) in Eq. (25). 
The normalized nth mode shape of the four-beam model is 
defined by 

( )
( )
( )( )

ˆ = .
max

n
n

n

w x
w x

w x
             (41) 

 
3  Numerical Results 
 
3.1  Comparison of natural frequencies and mode  

shapes of the four-beam model and a FE model 
Consider a cantilever beam with L=600 mm, h=b=10 

mm, E=206 GN/m2, ν=0.3, and ρ=7800 kg/m3. 
Numerical results of natural frequencies and mode shapes 
of the four-beam model are compared with those from 
commercial FE software[45]; 2D singular elements 
PLANE183, which are six-node shell elements with two 
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degrees of freedom at each node, are used around the crack 
tips of the cantilever beam in the FE model. The other parts 
of the beam are meshed by 2D solid elements PLANE 42. 
Contact between nodes in the crack region is ignored in the 
FE model. Table 1 shows the first three natural frequencies 
of the four-beam model and the FE model. It is shown that 
the first three natural frequencies of the undamaged beam 
from the proposed model, which are the same as those of 
the uniform cantilever beam, are close to those of the FE 
model, and their differences range from 0.13% to 0.26%. 
For cracked cantilever beams, the differences between the 
first three natural frequencies of the four-beam model and 
the FE model range from 3.79% to 31.20%, and the natural 
frequencies decrease with the crack length and depth. In the 
proposed model, an undamaged beam has three undamaged 
beam segments. The top beam segment is considered as a 
beam segment with a zero height. The other three beam 
segments are assumed to be Euler-Bernoulli beams. 

 
Table 1.  Comparison between the first three natural 
frequencies of the four-beam model and the FE model 

Model 
X1/L× 

h1/h 
L2/L 

Natural frequency/Hz 

ω1 ω2 ω3 

Four-beam 
model 

0×0 0 

23.060 144.516 404.649

FE model 23.089 144.443 403.590
Difference/% 0.126 0.051 0.262 

Four-beam 
model 

0.25×0.4 0.1 

19.465 138.258 353.332

FE model 23.059 143.637 403.532
Difference/% –15.481 –3.794 –12.669

Four-beam 
model 

0.25×0.4 0.15 

18.088 130.762 344.849

FE model 23.036 142.463 403.363
Difference/% –21.381 –8.260 –14.730

Four-beam 
model 

0.2×0.2 0.2 

19.465 135.218 361.242

FE model 23.033 142.294 400.106
Difference/% –15.386 –5.021 –9.950

Four-beam 
model 

0.2×0.3 0.2 

17.563 130.849 350.189

FE model 22.991 140.644 400.648
Difference/% –23.514 –7.011 –12.823

Four-beam 
model 

0.3×0.4 0.2 

17.435 112.960 335.650

FE model 22.995 142.505 385.079
Difference/% –24.082 –20.772 –13.064

Four-beam 
model 

0.4×0.4 0.2 

18.852 99.400 319.766

FE model 22.991 144.408 368.310
Difference/% –17.900 –31.202 –13.407

 
Fig. 4 shows the first three normalized mode shapes of 

beam segments 1, 2, and 4 of the four-beam model and 
those of the FE model; the amplitudes of beam segment 3 
are almost the same as those of beam segment 2 for the 
four-beam model and the FE model. Fig. 4(a) shows that 
the normalized mode shapes of the undamaged beam from 
the proposed model, which are the same as those of the 

uniform cantilever beam, are in excellent agreement with 
those of the FE model. Fig. 4(b) shows that the normalized 
mode shapes of the cracked cantilever beam with 
X1/L=0.25, h1/h=0.5, and L2/L=0.15 from the proposed 
model are similar to those of the FE model. 

 

 

Fig. 4.  First three normalized mode shapes  
of the four-beam model and the FE model 

 

The modal assurance criterion(MAC) values are used to 
evaluate the differences between the mode shapes of the 
four-beam model and the FE model; they are defined by[46] 
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é ù é ù
ê ú ê ú
ê ú ê ú
ê ú ê úë û ë û

å
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   (42) 

 
where the superscript   denotes complex conjugation, 

U  is a mode shape of the four-beam model, V  is a 
mode shape of the FE model or an experimentally 
measured mode shape, and n is the number of degrees of 
freedom for which U  and V  are available. Table 2 
shows the MAC values between the first three mode shapes 
of the undamaged beam from the proposed model and those 
of the FE model, where n=601; the diagonal entries of the 
MAC matrix are one and the off-diagonal entries are almost 
zero, which means that the first three mode shapes of the 
undamaged beam are almost the same as those of the FE 
model. Table 3 shows the MAC values between the first 
three mode shapes of the cracked cantilever beam with 
X1/L=0.25, h1/h=0.5, and L2/L=0.15 from the proposed 
model and those of the FE model, where n=601; the 
diagonal entries of the MAC matrix range from 0.980 to 
0.998, and the off-diagonal entries range from 0.001 to 
0.011.  
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Table 2.  MAC values between first three mode shapes  
of undamaged beam from the proposed model 

and the FE model 

Method 
Four-beam model 

1st mode 2nd mode 3rd mode 

FE 
model 

1st mode 1.000 1.159×10–5 1.105×10–5 
2nd mode 9.273×10–6 1.000 1.094×10–5 
3rd mode 9.820×10–6 7.925×10–6 1.000 

 
Table 3.  MAC values between first three mode shapes 

of cracked cantilever beam from the proposed 
model and the FE model 

Method 
Four-beam model 

1st mode 2nd mode 3rd mode 

FE 
model 

1st mode 0.998 0.002 0.001 
2nd mode 0.002 0.988 0.011 
3rd mode 0.001 0.009 0.980 

 
3.2  Effects of crack length, depth, and location 

on natural frequencies 
Fig. 5 shows the effects of the crack length(L2/L) and 

location(X1/L) on the first three natural frequency ratios 
ωn/ω0n, where ωn and ω0n are the natural frequencies of the 
cracked cantilever beam with h1/h=0.4 and the undamaged 
beam, respectively, calculated from the four-beam model. 
The first three natural frequencies of the cracked cantilever 
beam decrease with the increase of the crack length 
because the stiffness of the beam decreases with the 
increase of the crack length. The natural frequencies of the 
cracked cantilever beam are significantly affected by the 
crack location. The first natural frequency is more sensitive 
to a crack near the fixed end of the beam, and the second 
and third natural frequencies are more sensitive to a crack 
near the free end of the beam. Fig. 6 shows the effects of 
the crack depth(h1/h) and location(X1/L) on the first three 
natural frequency ratios of the cracked beam with 
L2/L=0.15, calculated from the four-beam model. The first 
three frequencies decrease with the increase of the crack 
depth. 

 

 

Fig. 5.  Effects of crack length(L2/L) and location(X1/L) on natural frequency ratios of the cracked cantilever beam with h1/h=0.4 

 

 

Fig. 6.  Effects of crack depth(h1/h) and location(X1/L) on natural frequency ratios of the cracked cantilever beam with L2/L=0.15 

 

3.3  Effects of crack length, depth, and location 
on mode shapes 

The effects of the crack length, depth, and location on 
CWT coefficients with a scale of 20 of the first three 
normalized mode shapes of the cracked cantilever beam are 
shown in Figs. 79, respectively.  

The crack lengths and locations can be clearly and 
directly identified from sudden changes in spatial variations 
of the wavelet coefficients of the first three normalized 
mode shapes of the cracked cantilever beam, where the 
cracks are located between lines a and b, lines a and c, and 
lines a and d in Fig. 7; between lines a and b in Fig. 8; and 

between lines a and d, lines b and e, and lines c and f in Fig. 9.  
In Fig. 7, case 1 denotes the beam without a crack; case 2 

denotes beam segments 1, 2, and 4 with X1/L=0.5,    
L2/L =0.1, and h1/h=0.4; case 3 denotes beam segments 1, 
3, and 4 with X1/L=0.5, L2/L =0.1, and h1/h=0.4; case 4 
denotes beam segments 1, 2, and 4 with X1/L=0.5, 
L2/L=0.15, and h1/h=0.4; case 5 denotes beam segments 1, 
3, and 4 with X1/L=0.5, L2/L=0.15, and h1/h=0.4; case 6 
denotes beam segments 1, 2, and 4 with X1/L=0.5, 
L2/L=0.2, and h1/h= 0.4; and case 7 denotes beam 
segments 1, 3, and 4 with X1/L=0.5, L2/L=0.2, and h1/h= 
0.4.  
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Fig. 7.  Effect of crack length on wavelet coefficients of first three normalized mode shapes of the beam with and without a crack 
 

 

Fig. 8.  Effect of crack depth on wavelet coefficients of first three normalized mode shapes of the beam with and without the crack 
 

In Fig. 8, case 1 denotes the beam without a crack; case 2 
denotes beam segments 1, 2, and 4 with X1/L=0.5, 
L2/L=0.15, and h1/h=0.2; case 3 denotes beam segments 1, 
3, and 4 with X1/L=0.5, L2/L=0.15, and h1/h=0.2; case 4 
denotes beam segments 1, 2, and 4, X1/L=0.5, L2/L=0.15, 
and h1/h=0.3; case 5 denotes beam segments 1, 3, and 4 
with X1/L=0.5, L2/L=0.15, and h1/h=0.3; case 6 denotes 
beam segments 1, 2, and 4 with X1/L=0.5, L2/L=0.15, and 

h1/h=0.4; case 7 denotes beam segments 1, 3, and 4 with 
X1/L=0.5, L2/L=0.15, and h1/h=0.4. 

In Fig. 9, case 1 denotes the beam without a crack; case 2 
denotes beam segments 1, 2, and 4 with X1/L=0.4, 
L2/L=0.15, and h1/h=0.4; case 3 denotes beam segments 1, 
3, and 4 with X1/L=0.4, L2/L=0.15, and h1/h=0.4; case 4 
denotes beam segments 1, 2, and 4 with X1/L=0.5, 
L2/L=0.15, and h1/h=0.4; case 5 denotes beam segments 1, 
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3, and 4 with X1/L=0.5, L2/L=0.15, and h1/h=0.4; case 6 
denotes beam segments 1, 2, and 4 with X1/L=0.6, 

L2/L=0.15, and h1/h=0.4; case 7 denotes beam segments 1, 
3, and 4, X1/L=0.6, L2/L=0.15, and h1/h=0.4. 

 

 

Fig. 9.  Effect of crack location on wavelet coefficients of first three normalized mode shapes of the beam with and without the crack 

 
Note that lines a through f are located at the centers of 

the sudden changes that look like sine waves, and the crack 
tips are not located at the peaks of the sine waves. The 
periods of these sine waves are about 0.1L, which are 
slightly affected by the crack length, depth, and location. 
As shown in Fig. 8, the amplitudes of the sudden changes 
in the spatial variations of the wavelet coefficients of the 
first and third normalized mode shapes of beam segments 1, 
2, and 4 are larger than those of beam segments 1, 3, and 4. 
The amplitudes of the sudden changes in the spatial 
variations of the wavelet coefficients of the second mode 
shape of beam segments 1, 2, and 4 are smaller than those 
of beam segments 1, 3, and 4. Similar results are observed 
in Figs. 8 and 9. It can be seen from Figs. 7 and 8 that the 
amplitudes of the sudden changes in the spatial variations 
of the wavelet coefficients increase with the crack length 
and depth. It can also be seen from Fig. 9 that the 
amplitudes of the sudden changes in the spatial variations 
of the wavelet coefficients become larger when the crack 
gets closer to the free end of the beam. 

 

4  Experimental Validation 

 

To validate the four-beam model, the first three natural 
frequencies and mode shapes of a cantilever beam with an 
embedded horizontal crack are measured. The cracked 
beam is made of acrylonitrile butadiene styrene using a 3D 
printer. The length, width, and thickness of the beam are 
111.4 mm, 10.5 mm, and 5.2 mm, respectively, and the 

length, width, and height of the crack are 16.6 mm, 10.5 
mm, and 0.3 mm, respectively, as shown in Figs. 10(a) and 
(b). The distance between the left end of the crack and the 
fixed end of the beam is 53.1 mm, and that between the top 
surface of the crack and the top surface of the beam is 2.6 
mm. 

In order to get precise natural frequency and mode shape 
measurement without incurring mass loading, an 
operational modal analysis(OMA) with non-contact 
excitation and measurement[47] is performed, and an 
experimental setup is shown in Fig. 10(c). To create a fixed 
boundary of the cantilever beam, a vice grip is used to 
firmly clamp two flat metal plates, and the fixed end of the 
beam is clamped between the two plates. An electric 
speaker with a wooden fixture faces the beam and 
generates acoustic excitation to it. Two Doppler laser 
vibrometers are used to measure the responses of the beam: 
Laser 1 in Fig. 10(c) is a Polytec PSV-500 scanning laser 
vibrometer that measures velocities of measurement points 
on the beam, and Laser 2 is a Polytec OFV-353 single-point 
laser vibrometer that measures the velocity of a reference 
point on the beam. There are totally 129 measurement 
points on the beam, which are evenly distributed along the 
length of the beam. Acoustic excitation in the form of burst 
chirp is used to excite the beam, and cross power spectral 
densities between the velocities of the measurement points 
and that of the reference point are calculated, from which 
the first three natural frequencies and mode shapes of the 
beam are calculated by Operational PolyMax of LMS Test. 
Lab Rev. 9b. 
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Fig. 10.  Experimental setup 

 
The FE model of the test beam is constructed using 

commercial FE software[45]. The material properties of 
beam are E=2.10×109 N/m2, ν=0.4, and ρ=1000 kg/m3. 
Table 1 shows the first three natural frequencies from the 
experiment, the FE model, and the four-beam model, and 
the differences between the measured and calculated 
natural frequencies. The differences between the first three 
natural frequencies from the FE model and the experiment 
are –0.67%, –0.63%, and –0.25%, respectively. The first 
three natural frequencies of the test beam from the FE 
model are in excellent agreement with those from the 
experiment. The differences between the first three natural 
frequencies from the four-beam model and the experiment 
are –8.84%, –29.88%, and –4.49%, respectively. While the 
differences between the first and third natural frequencies 
from the four-beam model and the experiment are small, 
the difference between the second natural frequency from 
the four-beam model and the experiment is relatively large 
because there is a turning point of the second mode shape 

near the center of the crack(see Fig. 11(b)). The differences 
between the first three natural frequencies from the 
four-beam model and the experiment may also be caused 
by the fact that there is no gap in the crack region in the 
four-beam model and there is a gap in the crack region of 
the test beam. 

 
Table 4.  Comparison among first three natural frequencies 

of the test beam from the experiment, the FE model,  
and the four-beam model 

Method 
Natural frequencies ω/Hz 

1st mode 2nd mode 3rd mode 

Experiment 97.14 615.00 1608.00 
FE model 97.79 611.10 1604.00 
Difference/% 0.67 –0.63 –0.25 
Four-beam model 88.55 431.26 1535.85 
Difference /% –8.84 –29.88 –4.49 
 
Fig. 11 shows the first three normalized mode shapes of 

beam segments 1, 2, and 4 from the experiment, the FE 
model, and the four-beam model, where the mode shapes 
from the experiment are real parts of the mode shapes. 
Table 5 shows the MAC values between the first three 
normalized mode shapes of the test beam from the 
experiment and the FE model; the diagonal entries of the 
MAC matrix range from 0.935 to 1.000, and the 
off-diagonal entries range from 0.000 2 to 0.015. Table 6 
shows the MAC values between the first three normalized 
mode shapes of the test beam from the experiment and the 
four-beam model; the diagonal entries of the MAC matrix 
range from 0.919 to 0.993, and the off-diagonal entries 
range from 0 to 0.036. Table 7 shows the MAC values 
between the first three normalized mode shapes of the test 
beam from the four-beam model and the FE model; the 
diagonal entries of the MAC matrix range from 0.984 to 
0.994, and the off-diagonal entries range from 0.000 1 to 
0.007. The first three normalized mode shapes of the test 
beam from the experiment agree very well with those from 
the FE model, and they are similar to those from the 
four-beam model. The wavelet coefficients of the third 
normalized mode shape from the experiment, the FE model, 
and the four-beam model are also compared, as shown in 
Fig. 12. Sudden changes in the spatial variations of the 
wavelet coefficients are observed in the crack region from 
the three different methods; the waveforms of the sudden 
changes are similar. The results from the experiment and 
the FE model validate those from the four-beam model. 

 

 
Fig. 11.  First three normalized mode shapes from the experiment, the FE model, and the four-beam model 
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Table 5.  MAC values between first three mode shapes 

of the test beam from the experiment 
and the FE model(n=129) 

Method 
FE model 

1st mode 2nd mode 3rd mode

Experiment 

1st mode 1.000 0 0.000 0 0.000 3 

2nd mode 0.000 3 0.997 0 0.000 7 
3rd mode 0.040 0 0.015 0 0.935 0 

 
Table 6.  MAC values between first three mode shapes 

of test beam from the experiment 
and the four-beam model(n=129) 

Method 
Four-beam model 

1st mode 2nd mode 3rd mode

Experiment 

1st mode 0.993 0 0.005 0 0.000 2 

2nd mode 0.003 0 0.976 0 0.010 0 
3rd mode 0.036 0 0.032 0 0.919 0 

 
Table 7.  MAC values between first three mode shapes  

of the test beam from the four-beam model 
and the FE model(n=129) 

Method 
Four-beam model 

1st mode 2nd mode 3rd mode 

FE 
model 

1st mode 0.994 0 0.004 0 0.000 1 
2nd mode 0.007 0 0.984 0 0.004 0 
3rd mode 0.005 0 0.007 0 0.989 0 

 
5  Conclusions 

 
(1) A new four-beam model with local flexibilities at 

crack tips is developed. Two separate beam segments are 
used to model the crack region so that the crack can be 
open. The governing equations and the matching and 
boundary conditions of the four-beam model are derived 
using Hamilton’s principle.  

(2) The compliance between beam segments 1 and 2 is 
more than that between beam segments 2 and 4. The 
compliance between beam segments 1 and 3 is more than 
that between beam segments 3 and 4. All the compliances 
increase with the crack length and depth.  

(3) For the undamaged cantilever beam, the differences 
between the first three natural frequencies from the 
proposed model and those of the FE model range from 0.05% 
to 0.26%; the diagonal entries of the MAC matrix between 
the corresponding mode shapes are one and its off-diagonal 
entries are almost zero. For a cracked cantilever beam, the 

differences between the first three natural frequencies of 
the four-beam model and those of the FE model range from 
3.79% to 31.20%; the diagonal and off-diagonal entries of 
the MAC matrix between the corresponding mode shapes 
range from 0.980 to 0.998 and from 0.001 to 0.011, 
respectively.  

(4) The first three natural frequencies of the cracked 
cantilever beam decrease with the increase of the crack 
length and depth. They can also be significantly affected by 
the crack location. The first natural frequency is more 
sensitive to a crack near the fixed end of the beam, and the 
second and third natural frequencies are more sensitive to a 
crack near the free end of the beam.  

(5) The amplitudes of the sudden changes in the spatial 
variations of CWT coefficients of the first three normalized 
mode shapes increase with the crack length and depth, and 
the distance between the crack center and the fixed end of 
the cracked cantilever beam. The amplitudes of the sudden 
changes in the spatial variations of the wavelet coefficients 
of the first and third normalized mode shapes of beam 
segments 1, 2, and 4 are larger than those of beam segments 
1, 3, and 4; the amplitudes of the sudden changes in the 
spatial variations of the wavelet coefficients of the second 
normalized mode shape of beam segments 1, 2, and 4 are 
smaller than those of beam segments 1, 3, and 4. The CWT 
method can be used to identify the crack length and 
location.  

(6) The sudden changes in the spatial variations of the 
wavelet coefficients look like sine waves, and the crack tips 
are located at the centers of the sine waves. The periods of 
the sine waves are about 0.1L, which are slightly affected 
by the crack length, depth, and location.  

(7) The differences between the first three natural 
frequencies of the test beam from the FE model and the 
experiment are –0.67%, –0.63%, and –0.25%, respectively. 
The first three natural frequencies of the test beam from the 
FE model are in excellent agreement with those from the 
experiment. The differences between the first three natural 
frequencies from the four-beam model and the experiment 
are –8.84%, –29.88%, and –4.49%, respectively. Sudden 
changes in the spatial variations of the wavelet coefficients 
are observed in the crack region from the experiment, the 
FE model, and the four-beam model; the waveforms of the 
sudden changes are also similar.  

 

 

Fig. 12.  Comparison among the wavelet coefficients of the third normalized mode shape from different methods 
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Appendix A:  
Derivation of equations of motion and 
matching and boundary conditions of the 
four-beam model in Fig. 2 
 

The kinetic and potential energies of the four-beam 
model in Fig. 2 are given by 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2

1

2

1 2

1 2

1

2

1 2

2 2
1 2

1 2
0

2 2
3 4

3 4

2 2
1 2

1 2
0

2 2
3 4

3 4

, d , d
2 2

, d , d
2 2

, d , d
2 2

, d ,
2 2

X X

X

X L

X X

X X

X

X L

X X

A A
T Y X t X Y X t X

A A
Y X t X Y X t X

EI EI
V Y X t X Y X t X

EI EI
Y X t X Y X t

 

 

é ù é ù= + +ê ú ê úë û ë û

é ù é ù+ê ú ê úë û ë û

é ù é ù¢¢ ¢¢= + +ê ú ê úë û ë û

é ù é ù¢¢ ¢¢+ê ú ê úë û ë û

ò ò

ò ò

ò ò

ò ò

 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

2 1 1 1
1

2

3 1 1 1
2

2

4 2 2 2
3

2

4 2 3 2
4

d

1
, ,

2

1
, ,

2

1
, ,

2

1
, , ,

2

X

Y X t Y X t
C

Y X t Y X t
C

Y X t Y X t
C

Y X t Y X t
C

+

é ù¢ ¢- +ê úë û

é ù¢ ¢- +ê úë û

é ù¢ ¢- +ê úë û

é ù¢ ¢-ê úë û

 

(A1) 
 
where an overdot denotes the partial time derivative, a 
prime denotes a spatial derivative with respect to the 
corresponding spatial variable, and I1 and I4 are 
cross-sectional area moments of inertia of beam segments 1 
and 4, respectively. The variations of the kinetic and 
potential energies are 
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By Hamilton’s principle, 
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where 1t  and 2t  are arbitrary start and end times, 
substituting Eq. (A2) into Eq. (A3), applying integration by 
parts, and using the facts that ( )δ , 0iY X t =  at 1t t=  and 
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 (A4) 
 
By Eq. (A4), the equations of motion of the four beam 
segments are 
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(A5) 
 
and the boundary conditions of the four-beam model are 
 

( ) ( ) ( ) ( )1 1 4 40, 0, , , 0.Y t Y t Y L t Y L t¢ ¢¢ ¢¢¢= = = =     (A6) 

 

By continuity of the displacements of the four-beam model 

at cross-sections 1X  and 2 ,X  
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which are the first four matching conditions of the 

four-beam model, and substituting Eq. (A7) into Eq. (A4), 

one obtains the other eight matching conditions at 

cross-sections 1X  and 2 ,X  
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Substituting 3

1 4 12,I I bh= = / 3
2 1 12,I bh= / (3I b h= -

 
)3

1 12h / , and Eq. (A8) into Eq. (A9) yields 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

33 3
1 1 1 2 1 1 3 1

33 3
1 1 1 2 1 1 3 1

33 3
4 2 1 2 2 1 3 2

33 3
4 2 1 2 2 1 3 2

, , , ,

, , , ,

, , , ,

, , , .

h Y X t h Y X t h h Y X t

h Y X t h Y X t h h Y X t

h Y X t h Y X t h h Y X t

h Y X t h Y X t h h Y X t

- + +

- + +

+ - -

+ - -

¢¢ ¢¢ ¢¢= + -

¢¢¢ ¢¢¢ ¢¢¢= + -

¢¢ ¢¢ ¢¢= + -

¢¢¢ ¢¢¢ ¢¢¢= + -
 

(A10) 
 

Appendix B:  
Entries of matrices G1, G2, G3, and G4 in Eqs. 
(27) and (28) 

 
Entries of matrix G1 in Eq. (27) are as follows: 
 

1 1
1,1 1 1,2 1 1

1 1
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1 1
2,3 1 1 2,4 1 1

1 2 1 2
3,1 1 1 1 3,2 1 1 1

1 2 1 2
3,3 1 1 1 3,4 1

sin ,    cos ,  
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      (B1) 

 
Entries of matrix G2 in Eq. (27) are as follows: 

 
2 2 2 2
1,1 1,2 1,3 1,40,    1,    0,    1,g g g g= = = =  

2 2 2 2
1,5 1,6 1,7 1,8 0,    0,    0,    0,g g g g= = = =  

2 2 2 2
2,1 2,2 2,3 2,40,    0,    0,    0,g g g g= = = =  
2 2 2 2
2,5 2,6 2,7 2,80,    1,    0,    1,g g g g= = = =  
2 2 3 2 2 2 3 2
3,1 3,2 2 3,3 3,4 20,    ,    0,    ,c cg g h g g h = =- = =  
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   3 32 3 2
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( ) ( )3 32 3 2
8,2 2 2 2 3 4 2 2 2sin 1 cos ,c c cg l c h c h h l   é ù=- - - -ê úë û

 

( ) ( )3 32 3 2
8,3 2 2 2 3 4 2 2 2cosh 1 sinh ,c c cg l c h c h h l   é ù= + - -ê úë û

 

( ) ( )3 32 3 2
8,4 2 2 2 3 4 2 2 2sinh 1 cosh ,c c cg l c h c h h l   é ù= + - -ê úë û
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-
    

(B2)
 

 
Entries of matrix G3 in Eq. (28) are as follows: 
 

3 3
1,1 2 2 1,2 2 2

3 3
1,3 2 2 1,4 2 2

sin ,    cos ,

sinh ,    cosh ,

g l g l

g l g l

 

 

= =
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3 3
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sin ,    cos ,
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 

 
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g h l h l

g h l h l

   

   
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   

= +

= +
 

( ) ( )3 33 2 3
2,5 3 3 3 3 3 31 sin 1 cos ,c cg h l h l   =- - - -  
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( ) ( )3 33 2 3
2,6 3 3 3 3 3 31 cos 1 sin ,c cg h l h l   =- - + -  

( ) ( )3 33 2 3
2,7 3 3 3 3 3 31 sinh 1 cosh ,c cg h l h l   = - + -  

( ) ( )3 33 2 3
2,8 3 3 3 3 3 31 cosh 1 sinh ,c cg h l h l   = - + -  
3 3
3,1 2 2 2 3,2 2 2 2

3 3
3,3 2 2 2 3,4 2 2 2
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   

   
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   

   

= =-

= =
 

3 3 3 3
4,1 4,2 4,3 4,40,    0,    0,    0,g g g g= = = =  
3 3 3 3
4,5 4,6 4,7 4,80,    0,    0,    0.g g g g= = = =  

(B3) 
 
 
 
 

Entries of matrix G4 in Eq. (28) are 
 

( ) ( )( )
( ) ( )( )
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c c

c c
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   
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