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A finite element method simulation of crack propagation was used to study the effects of microcracking at facets as a 
damage process in brittle composites and the consequence for material toughness. A cont inuum model for microcracking at 
grain boundary facets was used in conjunction with the elasticity law. The model accounts for modulus  reduction only and 
neglects residual strain effects. The nonlinear finite element equations were solved incrementally. The solution for each load 
increment was obtained using a Newton iteration method. Crack propagation was achieved by successive tip node relaxation 
upon satisfaction of a critical energy release rate criterion. The crack was allowed to propagate by approximately ten times the 
height of the initial microcrack zone. A substantial increase of the height of the damage zone prior to steady state propagation 
was observed. The apphed stress intensity factor was increased to sustain crack growth, and crack tip shielding occurs as a 
result of the wake. The amount  of toughening was up to 40% in terms of stress intensity factor and was influenced by the 
parameters of the constitutive law. Stress, strain, and microcrack density distributions near the tip of the steadily growing 
crack are discussed. 

1. Introduction 

Microcracking after processing is sometimes 
observed in ceramics (Evans and Langdon, 1976; 
Evans, Heuer and Porter, 1977). Typically ceramics 
are processed at high temperatures and cooled to 
ambient. This causes thermal stresses dominated 
by expansion mismatches in multi-phase ceramics 
and thermal expansion anisotropies in single phase 
systems. Single phase ceramics microcrack along 
the grain boundaries (Fu, 1983; Evans and Fu, 
1985a; 1985b) whereas two phase ceramics micro- 
crack at the particle/matrix interface (Evans and 
Faber, 1981; 1984). Generally, the resistance to 
microcracking is grain and particle size dependent 
with larger grain and particle sizes allowing mi- 
crofracture more readily (Evans and Fu, 1985b; 
Evans and Faber, 1981; Evans, 1974). If mi- 
crostructure sizes are sufficiently large, sponta- 
neous microcracking can occur on cooling after 
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processing. However, grain or particle size can be 
controlled during processing so that this damage 
can be avoided. The residual stresses remain after 
processing, however, and if a sufficiently high 
external stress is applied to the material, micro- 
cracking can occur as a result of the combination 
of external and internal stress. This situation can 
be caused by the intensificiation of stress at the tip 
of a large crack. Consequently a microcrack zone, 
analogous to a plastic zone, develops at such crack 
tips (Hoagland et al. 1974; Friedman, Handin and 
AlaN, 1972). This zone can have at least two 
effects on the propagation of the large crack. The 
damaged material provides a weak path for the 
crack and so causes crack growth more readily. 
On the other hand, the microcracks can shield the 
major crack from stress and provide a toughening 
mechanism. Indeed, toughness enhancement in 
conjunction with microcracking is observed in 
practice (Hubner and Jillek, 1977; Knehans and 
Steinbrech, 1982). In our paper, we consider the 
mechanics of near tip microcracking and report on 
calculations for macroscopic crack growth in such 
microcracking materials. 
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Following Fu (1983) and Evans and Fu (1985b) 
we shall consider facet microcracking in single 
phase ceramics as illustrated schematically in Fig. 
1. Some grain boundaries may crack sponta- 
neously on cooling, but we shall assume that the 
grain size is small enough so that the number 
involved is negligible. When tensile stress is ap- 
plied to the ceramic, favorably oriented facets 
subject to large residual tensile stress will crack. 
The failure is stable because neighboring grain 
boundaries are less favorably oriented and prob- 
ably subject to lower tensile stresses. As the stress 
is raised, more facets crack and so damage is 
progressive with applied stress. Consider a macro- 
scopic element of the material. As the number of 
microcracks in the element increases, the material 
will become more compliant. Anisotropy will de- 
velop since the maximum principal tensile stress 
will influence microcrack orientations. Finally. as 
residual tensile stresses on facets are relieved by 
cracking, an increment of strain will occur at fixed 
stress (Evans and Faber, 1981; 1984). 

We will make use of the developments of Fu 
(1983) and Evans and Fu (1985b) and use a con- 
tinuum model to describe this material. Our model 
is slightly different from that in Fu (1983) but 
retains all the major features. As in their work, the 
anisotropy is neglected as a less significant contri- 
bution than modulus reduction. The modulus re- 
duction is introduced, as in Fu (1983) and Evans 
and Fu (1985a, 1985b), by the self-consistent for- 
mulation of Budiansky and O'Connell (1975). That 
formulation accounts for long range interactions 
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Fig. 1. A random set of facet microcracks in a typical hexogo- 
nal grain network. 

among the microcracks but neglects the nearc,~, 
neighbor effects. As such, it introduces intcrao- 
tions at a level similar to that in the works <;l 

Chudnovsky and Kachano', {19831 and Rose 
(1986a). However, the Budiansky and O'Connetl 
model allows us to account at the outset for finite 
microcracks (of penny shape) which are random!y 
distributed in the material matrix. Anisotropy 
arises in general because failure mechanisms favor 
the generation of microcracks ,oriented normal to 
the applied stress. The effect <~t" this on die elastic 
response of the material couid be accounted for 
using the work of Hoenig 11979) on such anise> 
tropic microcrack distribution,,,, However, tile ani- 
sotropy is thought to be not ~ery great becau,,,c it 
is largel> the residual stresses that contribute I~ 
the microcracking process, with the applied stress 
providing a relatively small increment up t,.> the 
criticial condition. The residual stresses are xan- 
dora as to orientation and so the microcracking 
will be almost random with a slight bias due to the 
applied stress. In consequence of this, a purely 
isotropic reduced modulus approach has been 
adopted. 

Another possible source of anisotropy is selec- 
tive closure of microcracks due to compressive 
stresses. Models for this phenomenon have been 
developed by Horii and Nemat-Nasser (1983b: 
1985). The effect is likely to occur in ceramics like 
alumina, especially in the wake region created by 
a growing microcrack. However, this anisotropy 
will be limited by the fact that the residual stresses 
which cause the microfractures will also cause the 
resulting flaws to remain open even when there is 
zero applied stress. As a result, there has to be 
substantial compression before the microcracks 
close. In addition, the microcracks are created in 
the crack tip region where all of the principal 
stresses are tensile and the question o[ closure 
does not arise there. In view of tile weak aniso- 
tropic effect associated with closure in the wake 
region behind the crack tip, the effect has beert 
neglected. 

As noted above, the residual stresses relieved 
by microcracking cause the flaws to be open even 
when there is no applied stress acting on the 
material element. As a result of this, there will be 
a residual strain in macroscopic samples of the 
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microcracked material when free of applied stress. 
That is, material loaded to cause microcracking 
and then unloaded will have a residual dilatation. 
This will make a significant contribution to the 
toughening effect of microcracks (Evans and 
Faber, 1981; 1984; Fu, 1983; Evans and Fu, 
1985b). The effect has been incorporated into 
numerical calculations by Charalambides (1986) 
and Charalambides and McMeeking (1986b). The 
purpose of this paper is to address the modulus 
reduction effect on toughening by itself, and the 
work just referred to should be considered a sequel 
to this paper, with residual strain effects included. 
However, the effect of residual stresses as far as 
retention of the predominant isotropy of the 
material response is concerned is considered to 
prevail even though the residual strain resulting 
from it are neglected in this paper. Thus the 
macroscopic stress-strain response of the material 
is as shown in Fig. 2 with nonlinear behavior 
caused by microcracking followed by a return to 
zero strain upon unloading. 

The continuum constitutive law that results is 
used in calculations of the development of micro- 
crack zones around a plane strain macroscopic 
crack tip. Previous calculations (Charalambides 
and McMeeking, 1986a) have indicated that mi- 
crocracking has little or no effect on crack growth 
initiation. These calculations were carried out for 
stationary cracks. It must be deduced that as the 
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Fig. 2. The s t r e s s - s t r a in  re la t ion for a microcrack ing  mater ia l  
wi th  no res idual  strains.  

crack grows, resistance to crack growth builds up 
by the formation of a wake of microcracked 
material. This wake contributed to the shielding of 
the crack tip and so a resistance or R-curve 
(Knehans and Steinbrech, 1982; McMeeking and 
Evans, 1982) is a feature of the fracture behavior 
of this material. That is, the crack tip stress inten- 
sity factor as measured from the applied load 
increases as the crack grows. As in plane stress 
behavior in metals, the R-curve influences the 
stability of the crack growth and thus determines 
the level of effective fracture toughness that can 
be achieved. 

The objective of this work is to quantify the 
mechanics of microcrack toughening by simula- 
tion of crack propagation in finite element calcu- 
lations using the continuum constitutive law for a 
microcracking material. Small scale microcrack 
zones are ensured by the level of applied loading 
and crack growth commences when a critical en- 
ergy release rate at the crack tip is achieved. As 
discussed by Charalambides and McMeeking 
(1986a), the constitutive law is such that the mi- 
crocrack density is allowed to saturate to a finite 
level at high stress. As a consequence, the material 
adjacent to the crack tip is linear elastic although 
with a reduced modulus. It follows that the con- 
cepts of stress intensity factor and energy release 
rate are valid for the crack tip. The crack growth 
is simulated by nodal release when the critical 
crack tip energy release rate for propagation is 
exceeded. Growth continues until the criterion 
fails. Then, the applied loads are increased until 
the critical condition for growth is exceeded again, 
at which stage another node is released to cause a 
step of crack propagation. This process is con- 
tinued until the length of the crack growth is 
several times the microcrack zone size. The energy 
release rate and stress intensity factor as com- 
puted from the applied loads can be obtained and 
plotted against the amount of crack growth. These 
R-curves can be used to provide information about 
the magnitude of microcrack toughening. In ad- 
dition, the steady state toughening results ob- 
tained from this work will be compared with the 
less exact results of Charalambides and McMeek- 
ing (1986a) which were obtained by interpretation 
of stationary crack results. 
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T h e  c o n t i n u u m  m i c r o c r a c k i n g  s o l i d  

The self-consistent microcracking model devel- 
oped by Fu (1983) and Evans and Fu (1985a) and 
used in earlier work on microcracking solids by 
Charalambides and McMeeking (1986a) will be 
used throughout the present analysis to describe 
the behavior of the stress-induced microcracking 
material. The microcracking law relating stress 
magnitudes to microcrack density values is given 
as follows. For monotonically increasing loading, 
if 

o~ < o,. then ~ = O. 

material remains unmicrocracked; 

o ~  oe~<o m then E = ),(Oe -- O~), 

the microcrack density is increasing 

linearly with o; 
(1) 

Oe> % then e = ?~(Om -- O~) = C~, 

the microcrack density is saturated. 

The term ~ is the microcrack density, ~ = ~'o~o,~ 
is an equivalent stress measure, o is the macro- 
scopic stress tensor, o~ is the critical stress for 
microcracking initiation, o m determines saturation 
microcrack density value e~ and ?t is the micro- 
cracking rate with stress. The scalar measure of 
stress, % has been chosen to control microcrack- 
ing because it conforms to some extent with the 
findings of Evans and Fu (1985a) in that regard. 
In addition, use of o~ leads below to a hyperelastic 
constitutive law for cases in which o e increases 
monotonically. This in turn leads to a path inde- 
pendent J-integral (Rice, 1986) for stationary 
crack problems. 

The microcrack density e is as defined by 
Budiansky and O'Connell (1975) and is propor- 
tional to the number of microcracks per unit 
volume times an effective volume for the micro- 
cracks. When there are N circular microcracks per 
unit volume on grain boundary facets and each 
microcrack has a radius ½l then ~ = ½Nl 3, where l 
is the facet length. We also note that c cannot 
decrease. As will be seen later, the parameters of 
the microcracking law can be tied to microstruct- 
ural features. The expressions for the effective 
elastic properties of a microcracked solid obtained 

by gudiansky and O'Connell (1975) were ap-. 
proximated by Charalambides and McMeeking 
(1986a) as follows 

v l 
(2) 

P7 ~' = f  

where i ,  E and ~, v are the Young's Modulus 
and Poisson's ratios of the microcracked and un- 
microcracked solid respectively. The parameter f 
is a microcracking internal variable, and from 
equation (1) it can be seen that it is a function of 
stress and stress history. Then the constitutive law 
of the microcracking solid is as follows 

f + v P , 
e ,~-  E o , , - T o ~ , 6 , ,  (3) 

where o~ is the macroscopic stress tensor, e,j the 
macroscopic strains, and 6il the Kronecker delta. 
It is useful to state the above constitutive relations 
in the following forms 

[-% v ] _ L- + ~ 1 3 , ,  . { 4 )  

For plane problems 

f + p  l, 
L 

cL B, y =  1 ,2 :  

E[ 
o , ~  - .f + t, %~ + - -  

~, B, , /=  1.2,  

"* ] 
(%)  

(5b) 

where u* = 1,/f for plane strain and v* = p / ( f  
v) for plane stress. A typical uniaxial stress-strain 
curve is shown in Fig. 2. 

T h e  b o u n d a r y  v a l u e  p r o b l e m  

The boundary value problem for the propagat- 
ing crack is similar to that for the stationary crack 
case solved by Charalambides and McMeeking 
(1986a). A circular region around the crack tip is 
analyzed. To enforce small scale microcracking 
conditions we choose the outer radius of the re- 
gion around the crack tip to be far enough so that 



P.G. Charalambides, R.M. McMeeking / Crack propagation in a microcracking solid 75 

the elastic stress field there remains virtually unaf- 
fected by the induced microcracking. However, 
the radius is also small enough that the elastic 
crack tip singular stresses dominate the solution at 
the perimeter. The boundary conditons around the 
outer radius are chosen to enforce this. They are 
the tractions of the elastic crack tip singular field 
for mode I (tensile opening). The loads are char- 
acterized by KI, the stress intensity factor. This 
arrangement represents the problem of small scale 
crack tip microcracking. Symmetry conditions are 
enforced through appropriate boundary condi- 
tions and so only a semicircle as shown in Fig. 3 is 
used in the calculations. The crack is traction free. 
Governing equations of equilibrium and compati- 
bility are enforced through the principle of virtual 
work in the absence of body forces, 

Lou3~u dA = f Ti3u ~ a s  (6) 
,.'ST 

where A is the plane area being analyzed, S T is 
the perimeter where tractions are prescribed, u are 
the displacements and the symbol 3 indicates a 
virtual variation of the quantity following it. The 
variation disappears on S -  S T where the dis- 
placements are prescribed. 

The solution to this boundary value problem 
for a stationary crack will involve a crack tip 
microcrack zone. The inner core of this zone will 
be saturated with ~ = G and the response of the 
material in this core will be linear elastic with 
reduced moduli as given by (2). Consequently the 

crack tip stresses will have an r-1/2 singularity at 
the tip and a stress intensity factor KI t'p will 
characterize the stresses. The usual Irwin relation- 
ship can be used to give the crack tip energy 
release rate G tip. 

The constitutive law in (14) is hyperelastic for 
monotonically increasing o e and so the J-integral 
(Rice, 1968) is then path independent everywhere 
in the plane. The hyperelasticity can be dem- 
onstrated from the fact that there is a potential U 
which generates the constitutive law given by (3, 4). 
This potential has the form 

1 f oo v 2 
U(o)  = E ( f +  v)oedo ¢ -  ~--~(okk ) (7) 

U 

and it should be noted that since f= f (Oe)  for 
monotonic increase of cr e, the integral is path 
independent in stress space as long as oe increases 
monotonically. The constitutive law can be gen- 
erated by the partial derivatives 

3U f + v 3o~ v 
3oij E Oeooij E Okk3ij~'f'ij' (8) 

where the fact that 

0 o J a o  u = o u / o  ~ 

has been used. Since the strain can be obtained 
from the potential U it follows that a Legendre 
transformation gives 

W(¢) = oU, i j -  U(o)  (9) 

where W is the strain energy density per unit 
volume and that 

n E j(n) -_- ] i 

/ @ along x axis: x > 0 i X 
I CRACK TiP Xm -- ~100 x m -  q 

MACROCRACK 

Fig. 3. The boundary conditions used in formulating the micro- 
cracking boundary value problem around the crack tip of a 
major crack under mode I loading. 

Oij = ~W//~Eij. (10) 

This last result is used in the proof of the path 
independence of J. It should be reiterated that the 
comments above are only valid for monotonic 
increases in o e and thus the path independence of 
J holds only for stationary cracks during initial 
loading. From the path independence of J and the 
fact that G rip = J ,  it follows that for stationary 
crack subject to monotonically increasing loads 

Grip (1 ~E_V 2) K?- (1-d2)(K?ip) 2 (11) 
E 
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where K~ is evaluated in the far field and E and ~, 
have their saturated values. 

Returning now to the problem formulation, we 
observe that for the stationary crack, the value of 
K~ controlling the applied loads is increased until 
G tip reaches the critical level for crack propa- 
gation GJ ~p. This corresponds to a value of K~ 
equal to Kf. The crack begins to grow and is made 
to continue to grow in such a way that G tip iS held 
fixed at the value G~ ip. Equation (11) is no longer 
valid because of the irreversibility of the constitu- 
tive law. To maintain G tip = Gc tip, K~ controlling 
the applied loads must be adjusted during crack 
growth. As will be seen, K~ always increases 
during crack growth and the boundary conditions 
must be altered to maintain the correct singular 
field relative to the moving crack tip. 

The finite element calculations 

The finite element equations can be derived 
from the principle of virtual work given by equa- 
tion (6). The above equation and the constitutive 
law (5) give rise to the nonlinear finite element 
equations, 

[K{., ,)]  { . . ,}  = {Z,)  {12) 

where [K(u , ) ]  is the stiffness matrix, {u,} is the 
array of nodal displacements, and the form [k( u,, )] 
indicates the dependence of the stiffness on the 
nodal displacements due to the nonlinear constitu- 
tive law. The nonlinear finite element equations 
were solved incrementally. Small increments of 
load were used to avoid any difficulty with the 
irreversible constitutive law. Material at integra- 
tion stations in the finite element mesh was made 
to remain on the nonlinear loading branch or on 
the linear unloading branch entirely throughout 
an increment of load and was not permitted to 
switch from one branch to another within that 
step. This means that the material was effectively 
hyperelastic at the integration stations during a 
given step, and a Newton iteration scheme was 
used to obtain satisfactory results for equation 
(12) at the end of each step. Any switch from 
loading to unloading took place between steps and 
was consistently allowed for, according to the 

constitutive law summarized earlier m this paper. 
During iterations, a norm of the discrepancy be- 
tween the actual and computed tractions was used 
to assess convergence of the solution. It was found 
that the number of iterations needed to obtain the 
stationary solution depended on the saturauon 
value of the microcrack density used m the prob- 
leln. Under very strict convergence requirements,.. 
the stationary crack solution was obtained after 
four iterations for e~ = 01 whereas for e - :  05 
convergence for the above solution was achieved 
after ten iterations, indicating the severe effects of 
high microcrack density values on the non-linear- 
ity of the material behavior. When the crack was 
growing and either a node was being released o¢ 
an increment of the load was applied, only t~o or 
three iterations were needed to update the rnicro~ 
crack density. 

The finite element mesh used for the calcula- 
tions is shown in Fig. 4. The zone of microcracks 
developed in the inner core mesh shown in Fig. 
4(c). The radius of the outer boundary where the 
tractions were applied was chosen to be approxi- 
mately 100 times the vertical side of the rectangu- 
lar inner core mesh shown in Fig. 4(aL thus en- 
forcing small-scale microcracking conditions, in 
additiom the size of the inner core mesh and 
therefore the size of the finite elements in that 
region was chosen so that a sufficiently large 
number of elements were involved in the satura- 
tion microcrack zone for proper calculation <,i 
G ~ip. As shown by Charalambides and McMeekmg 
(1986a) !'or stationary cracks, the saturation zone 
diminishes significantly as e~ becomes larger than 
0.4. In this case an enormous number of elemems 
would be required for accurate toughening predic- 
tions. Such a fine mesh was not possible, and this 
affected the accuracy of the results although the 
trends remained the same and comparison witi~ 
the less exact results of Charalambides and Mc- 
Meeking (1986a) can be made. I 'he mesh used 
contains a total of 1004 four-noded isoparametric 
elements with four stations for integration ol the 
material stiffness and a total of 1046 nodes. The 
crack tip was located two elemenls to the right ,,~ 
the left-hand side of the innermost mesh when the 
stationary solution was obtained. The crack was 
caused to propagate when the energy release rate 
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a I ~  ~100xH ,I 

b I 3xH ~n 
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Fig. 4. The finite element mesh used in the finite element crack 
propagation simulation. 

G tip exceeded the critical level. The quantity G tip 

was computed as needed from a generalized stiff- 
ness derivative method of Parks (1974; 1978) mod- 
ified to allow for the microcracking constitutive 
law. The strain energy density W used in the 
above calculations can be found in Appendix I. In 
our finite element analysis, we modelled the crack 

propagation by advancing the crack through the 
finite element mesh using controlled consecutive 
releases of nodes along the heavy line shown in 
Fig. 4(c). Once the criterion for initation of crack 
propagation was exceeded, the node at the crack 
tip was released, i.e., it was changed from zero 
normal displacement boundary condition to trac- 
tion free condition, thus advancing the crack by 
an element length. The finite element equations 
were then resolved for the new conditions. Crack 
propagation steps were repeated until G tip fell 
below G2 ip. At that stage an incremental increase 
of the applied loads was imposed and a new 
boundary value problem was solved until the con- 
dition for crack propagation was fulfilled again. 
The procedure was repeated until the crack ad- 
vanced by a distance approximately equal to ten 
times the height of the damage zone. 

Results 

Figures 5(a) to (f) show the progressive devel- 
opment of the microcracked wake zone as the 
crack advanced through the finite element mesh. 
The perimeter of the wake at c = 0 is slightly 
outside the contour for c = 0.01 shown in the 
figures. We observe that the width of the process 
zone increased substantially until steady crack 
growth conditions were established. This increase 
was of the order of 100% for saturation micro- 
crack density values c~ = 0.5 as shown in Fig. 6 
by the lines marked "maximum zone height", 
which denote the maximum width of the wake 
zone measured from the crack surface. The zone 
height increase was consistent with recent experi- 
mental observations of Marshall (1986). In con- 
trast, the height of the completely saturated inner 
zone increased very little as the crack advanced as 
shown in Fig. 6 by the other pair of lines. The 
widening of the microcracked zone became more 
pronouced as % ~ 0.5, whereas the corresponding 
increase for the saturation zone became insignifi- 
cant. 

Figure 7 shows the microcrack density profile 
in the y-direction at different positions in the 
wake of microcracked material. It is of some inter- 
est that the microcrack density varied almost lin- 
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Fig. 5 (continued). 
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early in the steady state wake as can be seen in 
Fig. 7. However, different choices of the dimen- 
sionless product Xo~ caused slight changes to the 
microcrack density distribution as reported by 
Charalambides and McMeeking (1986a). In con- 
trast, the density profiles for the stationary crack 
were different and nonlinear as can be seen in fig. 
8. 

Figure 9 shows the R-curves obtained through 
our finite element crack propagation modeling; 
i.e. plots of K t from the applied loads versus Aa. 

Fig .  8. The microcrack density profile in the  y direction at  

different posit ions in the frontal microcracked zone .  

the crack extension• R-curves for three different 
saturation values are presented, i .e,  ~ = 
(0.3, 0.4, 0.5). The actual numerical results are in- 
dicated by the point symbols in the figure and 
smooth curves have been drawn for clarity• The 
solid symbols correspond to a case when the avail- 
able energy at the crack tip was either equal to or 
greater than the critical value @tip whereas the 
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open symbols indicate that G rip < Gc tip and that 
the load was then increased. The incremental in- 
crease of the applied load resulted in overshoot- 
ing, which was minimized as much as feasible by 
taking small load steps. 

It should be noted that in Fig. 9 the applied 
stress intensity factor K t is normalized by its 
value K~ when crack propagation initiates. The 
crack tip value of the stress intensity factor has 
not been used in the plots of R-curves in the 
figure. It is clear from the previous discussion of 
the constitutive law and the stationary crack prob- 
lem that the crack tip stress intensity value for the 
crack prior to growth is considerably less than the 
applied value; i.e. for the stationary crack there is 
shielding of the stress intensification by the micro- 
cracks. The result comes about because of the 
path-independence of J and the reduced modulus 
value in the near tip saturation zone. From (11) 
the ratio of the tip value of the stress intensity to 
the applied value is approximately ~ - ~6% and 
so for £,= 0.5, the tip value for the stationary 
crack is around ~ of the applied value. This result 
suggests that there could be considerable toughen- 
ing from this source. However, the weakening 
effect of microcracks in the near tip region has not 
been considered in this analysis and, in addition, 
there is a question as to whether stress intensity 
factor or energy release rate is the appropriate 
parameter to use in assessing toughening effects. 
The point here is that the applied and tip values of 
the energy release rate are identical for the sta- 
tionary crack and if this is the critical parameter, 
no toughening results. (Further details are given 
by Charalambides and McMeeking (1986a)). In 
view of these remarks, Fig. 9 has been presented 
in a manner making no reference to the tip value 
of the stress intensity factor. Consequently, the 
R-curve behavior shown in the figure makes refer- 
ence to the toughness enhancement beyond crack 
growth initation for the microcracking material, 
rather than a toughness comparison between the 
microcracking material and one in which micro- 
cracking is suppressed. 

The R-curves make it clear that the microcracks 
shield the crack tip and thus a toughening effect is 
present. We observe that almost 75% of the 
toughening occurred during the first three-node 
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is consistent with the approximate results given by 
Charalambides and McMeeking (1986a). 

Figure 11 shows the equivalent stress % ahead 
of the current crack tip after crack extension Aa 
= 0,16 (K~/o~) 2. Substantial stress reduction was 
observed in the microcrack region. However, the 
deviation from the elastic solution diminished to 
negligible levels at a distance from the crack tip 
approximately five times the length x m of the 
microcrack zone. Due to the reduced modulus, the 
strains in the inner zone were higher than those of 
an unmicrocracked material. 

Discussion 

Relationship to ceramic properties 

As shown by Charalambides and McMeeking 
(1986a), the parameters of the microcracking law 

and o~ in equation (1) can be related to micro- 
structural variables through the theory of Fu (1983) 
and Evans and Fu (1985a) for microcracking of 
single phase ceramics. The grain size of the 
material is l and after cooling to ambient temper- 
ature the maximum stress on a grain boundary 
facet is OmRa~. This stress is proportional to temper- 
ature and depends otherwise on anisotropies of 
the ceramic (Fu, 1983). There exists also a 
threshold grain size 12 above which the ceramic 
microcracks spontaneously at ambient temper- 
atures. This critical size depends on the difference 
between ambient and processing temperatures and 
also varies from material to material. It can be 
measured independently. In terms of these quanti- 
ties 

a = 9/32OmR~, (13) 

~c ~ Omax 

The derivation of (13) and (14) is given in more 
detail by Charalambides and McMeeking (1986a). 

These relationships provide two of the three 
parameters X, % and o m, needed to characterize 
the microcracking law. Since o m is tied up with e~, 
the saturation density of microcracks, its value is 
more difficult to obtain. However, the experimen- 
tal data (Evans and Langdon, 1976) seems to 

indicate that at l/1~? = 0.01 as in our finite elemen~ 
calculations, the amount of toughness increase is 
about 5%. As can be seen in Fig. 10 where the 
finite element crack growth results for the tough- 
ness ratio Ki'//K~ are plotted against ~ ,  extrapo- 
lation indicates that e~ ~ 0.2 would give satisf~lc- 
tory results. However, those model deductions were 
based on a more limited model in which the wake 
of microcracked material was not permitted to 
widen as the crack grew. The wider zones in the 
more exact calculation for crack growth clearly. 
contribute more shielding and thus a smaller com- 
pliance change is sufficient. It should be noted 
that the less exact results of Charalambides and 
McMeeking (1986a) give a trend of toughness 
against grain size which agrees well with the ex- 
perimental data. The more exact results for crack 
growth will also give a similar trend. In the future. 
more extensive results will be reported for crack 
growth calculations and those will include the 
effect of residual strain as well as modulus reduc- 
tion (Charalambides and McMeeking, 1986b). in 
those calculations, a wider range of parameter 
values is being considered and substantial 
toughening can be expected. 

Relationship to previous work 

In this paper, as in the work of Charalambides 
and McMeeking (1986a), the notion of a micro- 
cracking continuum solid has been used in finite 
element calculations to predict microcrack density 
distributions around the crack tip of a major crack 
and the effect on the material toughness. How- 
ever, other approaches, mainly based on discrete 
microcrack mechanics, have been developed dur- 
ing the recent years. McClintock (1974) and Mc- 
Clintock and Mayson (1977) studied the nuclea- 
tion, growth and coalescence of microcracks in a 
two dimensional array of regular hexogonal grains. 
A statistical failure model was used to predict 
microcrack nucleation in a biaxial stress field. 
These microcracks were initially considered stable. 
However, further load increase caused the micro- 
cracks to grow. Finally, at a critical microcrack 
length, microcrack localization effects led to mi- 
crocrack coalescence to form macrocracks which 
limited the applied load to a maximum level. The 
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microcrack interaction was taken into account by 
iterative stress analysis. Hoagland, Embury and 
Green (1975) and Hoagland and Embury (1980) 
studied the phenomenon of near-tip microcrack- 
ing using a numerical model of two-dimensional 
discrete microcracks. These microcracks were 
placed in the near-tip singular stress field at pre- 
destined positions upon satisfaction of a critical 
normal or shear stress criterion. Approximate mi- 
crocrack-microcrack and microcrack-macrocrack 
interactions were taken into account by introduc- 
ing the singular stress fields associated with each 
microcrack and enforcing traction free macrocrack 
surface conditions. R-curve effects were predicted. 

Chudnovsky and Kachanov (1983) studied the 
same problem of small scale microcracking using a 
double layer potential technique. A closed form 
solution for the effective stress field for layers of 
2-D microcracks in the vicinity of the crack tip 
was proposed. This solution accounts for the in- 
teraction of microcracks among themselves and 
with the main crack. The traction free microcrack 
condition was enforced through a lengthy iterative 
method. 

Kachanov (1986) and Kachanov and Montagut 
(1986) further extended the above analysis. Their 
method of stress analysis in elastic solids with 
many cracks was based on a superposition tech- 
nique with self-consistency to determine the aver- 
age traction on individual cracks. This method 
yielded approximate analytical solutions to 2-D as 
well as 3-D crack arrays of arbitrary geometry. 
The accuracy was good even when the distance 
between cracks was smaller than the microcrack 
length in contrast to the standard self-consistent 
technique of Budiansky and O'Connell (1975). 
The shielding effect of a few microcracks near a 
macrocrack tip was studied. Substantial effects 
were found. One result of interest is that Kachanov 
and Montagut (1986) find that microcracks in the 
wake (i.e. somewhat behind the tip) have little or 
no effect as far as shielding is concerned. This 
seems to be in contrast to our results where a 
wake must be developed before the toughening 
effect is apparent. However, it must be borne in 
mind that the shielding implied by the R-curves in 
Fig. 9 is only part of the overall effect since the 
crack tip value of stress intensity is not involved in 

these plots. As discussed previously, there is sub- 
stantial shielding of the stationary crack tip due to 
the cluster of microcracks around it. The further 
increase in shielding due to the generation of a 
wake as the crack grows is in fact a lesser contri- 
bution although more substantial than the results 
of Kachanov and Montagut (1986) suggest it 
should be. It can be argued that the results of 
Kachanov and Montagut (1986) are somehow spe- 
cial although it is not clear why. This can be said 
for the following reason. If one considers a small 
circular patch of isotropically microcracked 
material present in an otherwise intact solid, the 
shielding effect can be estimated from the work of 
McMeeking and Evans (1982). Prior to micro- 
cracking, the patch is compatible with the sur- 
rounding material. After microcracking, the stress 
in the material around the patch applied to the 
patch, which now has a lower modulus, will cause 
it to be larger than the zone in the matrix it 
occupies. Thus it has effectively dilated and so the 
result for such dilatant patches as analyzed by 
McMeeking and Evans (1982) can be used. This 
shows that at fixed height above the crack, the 
shielding is maximized when the patch is at an 
angle ~-~r from the crack surface. This would place 
the patch rather far back in the wake. Perhaps the 
orientations of the cracks and their mutual inter- 
actions are important in the results of Kachanov 
and Montagut (1986) and it should be said that 
such effects have been omitted completely from 
the work in this paper and the discussion outlined 
above. Further investigation of the comparison 
between the models is warranted. 

The interaction of 2-D microcracks with the 
main crack was also studied by Rose (1986a) using 
a point source representation for the microcracks 
and a self-consistent scheme to determine the 
strength of these sources. A microcrack model 
consisting of two symmetric microcracks relative 
to the crack surface was considered. Crack shield- 
ing was predicted for favorably oriented micro- 
cracks whereas antishielding effects were predic- 
ted otherwise, 

In all discrete microcrack models mentioned 
above, the nucleation of microcracks takes place 
at predestined positions. Under this assumption, 
the complexity of the calculations reduces to trac- 
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table levels and useful qualitative information for 
the phenomenon of microcracking can be ob- 
tained as shown by Rose (1986a; 1986b). How- 
ever, due to the severe microcrack interdepend- 
ency, the microcrack zone is highly nonuniform 
and that presents difficulties in predicting new 
microcrack positions. In that respect, the discrete 
models are less tractable for computing accurate 
microcrack densities in the vicinity of the crack 
tip. In such a case, when detailed analysis of the 
microcracking phenomenon is needed, a con- 
tinuum mechanics description is preferred, as sug- 
gested by Rose (1986a). 

As discussed earlier in this work, the self-con- 
sistent formulation of Budiansky and O'Connell 
(1975) provided the basis for our continuum mi- 
crocracking model. On the other hand, when a 
prescribed set of penny shaped microcracks is 
considered, Margolin's approach (1983; 1984) pro- 
vides the basis for another continuum mechanics 
formulation of the microcracking phenomenon. 
Margolin, using the known stress and displace- 
ment fields for a penny shaped crack, constructed 
statistical relations for the internal stress and dis- 
placement fields for the cracked body. When a 
continuum set of microcracks was assumed, long 
range interactions were considered by introducing 
the effective elastic properties of the microcracked 
solid as in the Budiansky and O'Connell (1975) 
method. This gave rise to a constitutive law that 
had the same form of a generalized Maxwell solid. 
In addition. Margolin's model incorporated re- 
laxation time effects related to the microstructure 
which makes it suitable for dynamical calcu- 
lations. However, as described by Chudnovsky 
(1984), the model of a homogeneous continuum 
implies that all parameters are averaged over a 
representative volume and as such, they represent 
a statistical measure of the material behavior. The 
description is only valid on length scales that 
would include many microcracks. In that respect. 
long range microcrack interactions can be taken 
into account through the self-consistent formu- 
lation of Budiansky and O'Connell which consid- 
ers a randomly oriented set of microcracks. This 
formulation is also based on the notion of effec- 
tive elastic properties for the microcracked 
material, but the resulting approximate constitu- 

tire law is simple and can easily be incorporated 
in finite element calculations. In addition, micro., 
crack orientation effects and the resulting am- 
sotropy could be considered though ffoenig',,, 
(1979, 1982) work, but at the expense of com- 
plicating the model. In the continuum model, de- 
rived from the above formations, the microcrack 
density e is the damage parameter in the sense oi 
Chudnovsky (1984) and Chudnovsky and Moed 
(1985). Thermodynamic irreversibility is enforced 
by' not allowing ~ to decrease, whereas the thermo- 
dynamics and kinematics of microcrack nuclea- 
tion are not considered. 

In addition to their discrete micromechanics 
analysis (1983a, 1985) Horn and Nemat-Nasser 
(1983b) extended Budiansky and ()+Connell+s 
self-consistent formulation to account for load/' 
microcrack induced anisotropies by introducing 
crack closure effects. In that analysis, they showed 
that when closed cracks m a compressive stress 
environment experience frictional sliding, the 
overall moduli of the microcracked material be- 
come anisotropic and dependent on the loading 
conditions as well as the loading history+ As a 
result the material is characterized by distinct 
moduli for tension and compression, the latter 
being load and loading history dependent. Ideal]3,, 
this should be combined with the work of Hoenig 
(1979: 1982) for the elastic response of materials 
with an anistropic distribution of microcracks. 
Indeed, the framework for this is already there m 
the work of Horii and Nemat-Nasser (1983b). As 
discussed previously, the effect of the large facet 
residual stresses in the alumina ceramic produces 
a response which is substantially isotropic an& 
except for large compressions, symmetric about 
zero stress after microcracking has occurred, ln-- 
doubtedly, the anistropies involved in the work of 
Horii and Nemat-Nasser (1983b) and Hoenig 
(1979, 1982) should be included in an appropriate 
way, to enhance the model of microcracking for 
alumina. Perhaps this will be done in future devel- 
opments of this work. 

In recent work, Hutchinson (1986) has pro- 
vided an alternate continuum mechanics treat- 
ment of modulus reduction toughening due to 
microcracking. Residual strain effects have also 
been included in this work. A perturbation method 
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is used to obtain the shielding effect of the mod- 
ulus reduction and so must be restricted to rela- 
tively small compliance changes. However, this 
would include the case of e s = 0.1 that we have 
found to be relevant for alumina. There are dif- 
ferences in detail due to choice of microcracking 
criterion and rate, but the results of Hutchinson 
(1986) are substantially in agreement with our 
o w n .  

The previous paragraphs summarize the treat- 
ments of the micromechanics in the various dis- 
crete microcrack models mentioned above. Almost 
all models were based on two assumptions which 
reduced the complexities to tractable levels. The 
microcracks were chosen to be two dimensional 
and they were assumed to nucleate at prechosen 
positions. Even under these assumptions the most 
advanced models of Chudnovsky and Kachanov 
(1983), Kachanov (1986), Kachanov and Monta- 
gut (1986) and Rose (1986a) require very extensive 
calculations when a large set of microcracks is 
used. Except for Margolin's (1983) method and 
Kachanov's (1986), additional development would 
be required for the above models before they 
could be used in three dimensional problems. On 
the other hand, a continuum mechanics descrip- 
tion of the microcracking phenomenon like ours, 
Margolin's (1983), and that of Hutchinson (1986) 
provides an effective technique for computing rea- 
sonably accurate microcrack densities. As a conse- 
quence, macroscopic effects, for example toughen- 
ing, can be studied in relation to the microstruc- 
ture. Finite microcracks can be assumed and mi- 
crocrack induced anisotropies as well as residual 
strain effects can readily be incorporated into the 
model. In addition, three dimensional finite ele- 
ment calculations can be carried out without sub- 
stantially increasing the complexity of the prob- 
lem. It is likely that the progress in the area of 
microcracking of brittle materials will depend on a 
combination of discrete and continuum methods. 

Closure 

and McMeeking, 1986a) contains the necessary 
non-linear features that give rise to an R-curve 
during crack propagation. The microcrack zone 
widens initially during crack growth, but later the 
wake of microcracked material becomes parallel to 
the crack surface and steady state conditions pre- 
vail with a flat asymptote for the R-curve. The 
R-curves are initially relatively steep• The results 
indicate that the toughness of materials would be 
favorably affected by near tip microcracking as 
long as damaging effects caused by the weak 
nature of the microcracked material are not over- 
whelming. Further understanding of this point, 
the incorporation of residual strain effects, plus 
more extensive calculations are required for pro- 
gress on the phenomenon of near tip microcrack- 
ing. 

Appendix. Strain energy density calculations 

The microcracking law given by (1) and the 
constitutive law of (3) allow us to determine the 
strain energy density for a microcracking material. 
Let W be the strain energy density, then 

W= f %~ d%.~ (i) 
(,1 

and 

d£kl__ f q- P dOkl p ~ "  E - -E d % S k t  + ekt" (ii) 

Recall that f is a piecewise continuous function of 
o, i.e., 

f=  

• . 1 / 2  
1.0 if (oijo,  j ) < %,  

1 
16 l / 2  t-oc) 
0 c ~ (OuOij) 1/2 ~ 0 m, if 

1 , ,1 /2  
if toijoi.:) >~ o m. 

1 - J~k(o m - Oc) 

(iii) 

The modulus reduction continuum mechanics 
model proposed in earlier work (Evans and Fu, 
1985b; Evans and Faber, 1984; Charalambides 

The strain energy can now be expressed as a 
continuous function of f which, in itself, is stress 
dependent through (iii). By carrying out the in- 
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tegration in (i), we find the strain energy density 
to be 

w =  ( 1 / 2 e ) [ 0  + 

+ ( f +  v)(o~ + (9 /16X)(1  - 1 / / ) )  ~ 

+ 2q~(f, v, )` o~)} (ix,) 2 
- -  l * O k l  v 

where 

, / ,(x, v, )`, o~) 

[( " ,6 x , = (9/16),)  2 1 + ~ - ) , O c ) " X  - (1 + ~- o~) In x 
L 

- (1 + + 

- - ( 1  + ~) `oc)2  + v ( l  + ! ~ ) ` O c ) -  ½v]. {v) 

Notice that (iv) for the strain energy is good for 
both loading and unloading cases, providing that 
the internal microcracking variable f used is the 
maximum previously experienced by the particu- 
lar material point and the stresses correspond to 
the current stress state. 
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