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ABSTRACT: In this second of a two-part series of papers, the analytical and three-
dimensional finite element models developed in Part ! are implemented to predict the effective
elastic response of both stiff-porous ceramic and sofi-dense polymer matrix plain weave fabric
composites. Analytical results obtained using a Modified Lamination Theory (MLT) model
and which are based on four methods of unit-cell property averaging are presented. Effective
elastic in-plane properties predicted via the finite element method for a single woven ply and
for a laminate comprised of symmetrically arranged woven plies are also reported. Compari-
sons between the analytical estimates and the numerical predictions suggest that the Parallel
(P-MLT) property averaging scheme yields, in an overall sense, good unit-cell effective prop-
erty estimates. Thus, the P-MLT model was employed to conduct extensive parameter studies
aiming at assessing the effects of the woven geometry and the overall microstructure on the ef-
fective elastic properties of soff- and stiff-matrix woven composites. Soff-matrix systems were
shown to exhibit higher sensitivity to the unit-cell woven morphology and fiber/matrix elastic
mismatch when compared to their stiff-matrix counterparts. On the other hand, the effective
elastic properties of stiffFmatrix systems were shown to be substantially reduced with increas-
ing interbundle matrix porosity, and were also shown to be rather sensitive to the elastic proper-
ties of the thin fiber and bundle coatings. Surface contour data obtained from 3-D finite element
analysis provide strong evidence of local micro-bending and stress concentrations within the
unit cell. In both soff- and stiff-matrix systems, the out- of-plane normal and shear stresses along
the bundle/matrix interface surfaces were shown to be at least an order of magnitude smaller
than the predicted normal bundle stress along the fiber direction. This work presents detailed
analytical and numerical parameter studies, and explores for the first time the relations between
the microstructure and macromechanical woven composite response.
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1. INTRODUCTION

N THIS ARTICLE we report on analytical and three-dimensional (3-D) finite ele-

ment results on the in-plane effective elastic properties of plain weave fabric
composites comprised of an either soft-dense polymer matrix or of a stiff and po-
rous ceramic matrix phase. These results were obtained with the aid of the ana-
lytical and numerical finite element models developed in Part I [1] where an ex-
tensive literature review on the subject is also presented. Thus, in this section, we
shall present a brief synopsis of the models developed in Part I with emphasis
placed on the model variables used in conducting the parameter studies reported
herein.

1.1 The Unit-Cell Geometry

As discussed in Part I, an analytical approximate model that yields effective elastic
property estimates for plain weave fabric composites has been developed. The model
utilizes a new class of geometry shape functions which are used to define in a continu-
ous manner the woven bundle morphology as well as the surrounding interbundle ma-
trix domain within the reference unit-cell shown in Figure 1. The reference geometry
shown in the above figure, is obtained as the basic unit-cell sub-structure of an other-
wise continuous woven ply. In Part I, the geometry shown in Figure 1 was identified as
the one that preserves full symmetry and thus microstructural repeatability such that,
when loaded using the appropriate symmetry or antisymmetry conditions, the re-
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Figure 1. Cross-sectional geometry and non-dimensional unit-cell parameters used in the
development of the plain weave bi-directional undufation mode/ (see Reference [1]).
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sponse of the unit-cell to the applied loading would represent the response of the
continuum woven system subjected to the same loading. Conditions simulating
single and multiple ply responses were established in Part I, and thus, associated
results for single and multiple ply woven systems are reported herein.

As shown in Figure 1, the unit-cell geometry is defined with the aid of the fol-
lowing four independent geometry variables. The bundle waviness half period is
defined using the parameter a. As discussed in Part I, the elastic response of the
systems under consideration is studied in a non-dimensional environment such
that the results could be applied to a general class of woven systems instead of a
single specific system alone. Thus, all physical lengths were normalized with re-
spect to a characteristic length which for the case under consideration was taken
to be equal to the bundle undulation half period a and, as shown in Figure 1, the
normalized bundle half period 4 is taken to be equal to unity. Henceforth, all
other physical dimensions shall be normalized with respect to the reference
length a. As shown in Figure 1, the reference unit-cell has anormalized length i=
l/a, and a normalized height h= h/a. The fiber bundles which are also referred to
as the tows are characterized using the maximum normalized height of their
cross section b= b/a, while the spacing between bundles is denoted by ¢ = g/a.
Thus, as shown in Figure 1, the reference unit-cell is comprised of bundles
woven in a plain weave orthogonal morphology. In the development of the unit-
cell model in Part I, woven system terminology consistent with existing litera-
ture [7-21] was employed. Thus, the tows in the x global direction were referred
to as the warp tows whereas their orthogonal tows aligned with the global y direc-
tion were referred to as the fill tows.

1.2 Model Microconstituents

The Modified Lamination Theory (MLT) model developed in Part I, treats the
tows as a homogeneous orthotropic material with varying directional properties
consistent with the undulating tow geometry. At this mesoscopic level of analy-
sis, the surrounding interbundle matrix phase is treated as an effective linear
elastic and isotropic medium. The above effective mesoscopic constituent prop-
erty approach, has been the standard two-phase approach used in the literature in
deriving model estimates for the overall effective elastic properties of the woven
unit-cell. In the model developed in Part I, however, an additional level of analy-
sis was added for the first time, aiming at incorporating in a consistent manner
the effects of an intricate and often rather complex woven cell microstructure ex-
hibited by Chemical Vapor Infiltration (CVI) ceramic matrix woven systems
such as that shown in the micrographs in Figure 2 which were obtained by Zok et
al. [2], Steyer and Zok [3], McNulty and Zok [4]. Thus, at this new level of mi-
crostructural analysis, the tows were considered to be comprised of several mi-
croconstituents whose effects on the mesoscopic tow response were accounted
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Figure 2. Micrographs of a CVI ceramic matrix woven composite provided by Zok et al. [2].
(a) A composite laminate comprised of several randomly stacked woven plies. (b) An en-
larged view of a region along the edge of a fiber bundle.

for by employing various micromechanics models. More specifically, the ortho-
tropic fiber reinforcements within the tows were considered to be coated by arela-
tively thin and elastically isotropic film. The bundle matrix was considered to be a
porous medium simulating the bundle matrix porosity shown in Figure 2 which re-
sulted during the CVI material processing. Finally, the bundle micromechanics
also accounted for the presence of an overall elastically dissimilar bundle coating
consistent with the experimental evidence shown in Figure 2.

The bundle fiber reinforcements were considered to be themselves linear elastic
and orthotropic with the properties £ 7 v7 and G/ denoting the longitudinal fiber
elastic modulus, Poisson’s ratio, and shear modulus respectively, and E{ and v{« de-
noting the transverse fiber modulus and Poisson’s ratio respectively. The iso-
tropic elastic modulus and Poisson’s ratio of the fiber coating are denoted by E.
and vy, respectively, while those of the bundle coating are represented by Ejc and v,
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respectively. As aresult of the CVI processing technique the bundle matrix material
is taken to be the same as that of the matrix material between bundles (interbundle ma-
trix). The modulus of the fully dense matrix is denoted by E,, and its Poisson’s ratio
by V.

While accounting for a rather complex tow microstructure, the model developed in
Part [ also incorporated interbundle matrix porosity as needed to account for the popu-
lation of voids in the matrix region between bundles. As discussed in Part I, multi-
layered woven systems of the type shown in Figure 2, exhibit rather large discrete
voids in the matrix region between bundles. In soff-polymer matrix systems, however,
the interbundle matrix porosity is often dispersed throughout the matrix region such
that the interbundle matrix phase could be modeled using a homogenized elastic solid
characterized by reduced effective elastic properties. Thus, in Part I, the assumption
was made that homogenizing the matrix region as needed to account for the presence
of disperse porosity rather than the presence of discrete voids, provided a good enough
approximation for both sofi-polymer and s#if~CVI ceramic matrix woven systems. As
such, the model developed in Part [, does account for an interbundle matrix dispersed
porosity whose volume fraction for systems similar to that shown in Figure 2 is ob-
tained as the ratio of the volume occupied by the voids between bundles to the volume
occupied by the interbundle matrix region.

The relative volume occupied by each of the above constituents is described via
their respective volume fractions as follows: Cr = V;/Viuae is defined to be the
bundle fiber volume fraction, Cr. = Vz /Vpunare is used to denote the volume occupied
by fiber coating relative to the total volume occupied by the bundle, Com = Vim /Viunare
represents the bundle matrix volume fraction, Cyc = Ve /Viunare i the volume frac-
tion of the bundle coating layer, and Cs, = Vi, / Viunar represents the void or porosity
volume fraction within the bundle itself. In addition, the model incorporates as
an independent variable, the interbundle matrix volume fraction defined as C,, =
Vmatrie {(Viotat — Voundies) and the volume fraction for the interbundle matrix voids or
porosity which is defined as Cop = Vioias /(Viotar— Voundres). Note that Cy + Cr. + Cpm +
Cip+ Cpe=1and C,, + C,p = 1. For the sake of clarity, the unit-cell microstructural
parameters presented above are summarized as follows:

Fiber parameters

E] = fiber longitudinal modulus

E% = fiber transverse modulus

v] = fiber longitudinal Poisson’s ratio
v% = fiber transverse Poisson’s ratio
G{ = fiber longitudinal shear modulus

Fiber coating parameters

Ep
Vi

fiber coating modulus
fiber coating Poisson’s ratio
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Matrix parameters

En
Vi

dense matrix modulus
dense matrix Poisson’s ratio

Bundle coating parameters

E;. = bundle coating modulus
v5c = bundle coating Poisson’s ratio
Volume Fraction (VF)
Cy= fiber VF = Vil Viunare
C; = fiber coating VF = Vi ! Viundre
Cy» = bundle matrix VF = Vi /Viundte
Ci», = bundle microvoid VF = Vip/ Veundie
Cr = bundle coating VF = Vie/Viunae
C,» = interbundle matrix VF = Viatric /(Viotar — Viundies)
Cnpy = interbundle matrix microvoid VF = Vioias/(Vioar — Viundtes)

Woven unit cell geometry

a = unit-cell half period
b = bundle height
g = gap width
h = ply height
[ = unit cell length

1.3 Micromechanics Models and Constituent Homogenization

The complex bundle microstructure and porous interbundle phase described
above were homogenized with the aid of appropriate micromechanics models to
yield the effective mesoscopic properties of the homogenized tows and interbun-
dle matrix which comprise the standard tow-matrix constituent woven composite.
More specifically, the bundle homogenization was carried out in a hierarchical
four-step homogenization process. During the first step, the properties of the fiber
reinforcements and those of the fiber coating are combined via Hashin’s Compos-
ite Cylinder Assemblage (CCA) model to obtain the effective properties of the ho-
mogenized fiber. During the second step, the porous solid model employed by
Bassani [22] is used to obtain the effective properties of the porous bundle matrix.
In the third step, Hashin’s CCA model is used again to obtain the homogenized
mesoscopic properties of the fiber bundle. During modeling step #4, Hashin’s
CCA model is employed once more as needed to evaluate the bundle coating ef-
fects on the effective elastic response of the homogenized bundle. In each fi-
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ber/matrix homogenization step, the Hashin CCA model yields upper and lower
bounds on the effective elastic properties. In general the upper and lower bounds
were found to be relatively close. In this study the lower bound results from the
Hashin model were used. The resulting mesoscopic properties after step #4 are
used to obtain the macroscopic effective properties of the woven composite.

At the same time, the matrix phase was also homogenized using a dispersed po-
rosity model employed by Bassani [22]. Clearly, in the case of CVI ceramic matrix
systems, the above assumption can be used only as an approximation in estimating
the effects of the presence of discrete large voids within the region between bun-
dles. In light of this, a complementary study has been conducted as needed to as-
sess the effects of the presence of such discrete large voids. The modeling and re-
sults of that study are presented elsewhere [23].

1.4 Woven Unit-Cell Effective Properties Model

As discussed earlier in this work, the in-plane effective elastic properties of the
woven system were obtained analytically using a Modified Lamination Theory
(MLT) model and numerically with the aid of a three-dimensional (3-D) finite ele-
ment model. The effective mesoscopic properties of the woven tows and those of the
interbundle matrix were used in conjunction with the new family of geometry shape
functions developed in Part I as needed to establish the lamination morphology of
elemental columns positioned at global coordinates (x, y) within the domain of the
unit-cell. The mechanical response of each elemental column was then studied using
the classical lamination theory. The laminate stiffnesses, obtained for each elemen-
tal column were then integrated across the unit-cell using one of four integration
schemes as needed to establish the average woven unit-cell elastic response. These
integration schemes are based on fundamental assumptions on the profile of the
mid-plane strains and curvatures within the unit-cell under the application of exter-
nal loads. For example, the Series or (S-MLT) integration scheme assumes that the
force resultants remain constant across the length and width of the unit-cell. The
Series-Parallel (SP-MLT) model, assumes that while the resultant forces remain in-
dependent of x, they may remain functions of y while their respective strains and cur-
vatures exhibit a dependency on x and remain independent of y. The Parallel-Series
(PS-ML.T) integration scheme assumes the reverse of what is employed by the SP-
MLT model. Finally the Parallel (P-MLT) model assumes that the unit-cell mid-
plane strains and curvatures remain independent of position. Through the above pro-
cess, the in-plane elastic effective properties of the woven system were obtained.

In this paper we report a wide range of results on the effective elastic properties
of stiff-porous ceramic as well as soff-dense polymer matrix woven composites. In
most instances, the analytical predictions are compared to numerical results which
were obtained using the 3-D finite element pure tension and shear models pre-
sented in the companion paper, Part I, on modeling. Parameter studies are con-
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ducted for both stiff- and soft-matrix systems as needed to highlight and explore
the capabilities and limitations of the analytical and finite element models devel-
oped in the above mentioned studies. For comparison purposes with existing mod-
els [11-13], the soft-matrix results which are mostly associated with polymer ma-
trix woven composites shall be presented and discussed next.

2. SOFT-MATRIX WOVEN COMPOSITE RESULTS

This group of results were obtained using mostly the material properties em-
ployed by Naik and Shembekar [3] who derived estimates of the effective elastic
properties of a polymer matrix woven composite. In their case, a relatively soft-
epoxy resin matrix was reinforced by a woven network of relatively stiff T-300
carbon fiber bundles. The longitudinal fiber elastic modulus was reported to be ap-
proximately equal to E { = 230GPa whereas the isotropic resin matrix modulus
was E,=0.0152E7 = 3.5 GPa. Inthis work, the fibers within the tows are consid-
ered to be transversely isotropic with a longitudinal elastic and shear moduli £ J
and G/ respectively, transverse elastic modulus £ { and major and minor Pois-
son’s ratiosv 7, andv %, respectively. The normalized elastic properties of the mi-
croconstituents used in this section of the study are shown in Table 1(a). In Table
1, all elastic and shear moduli are normalized with respect to the longitudinal fiber
elastic modulus £ Which, as discussed above for the Naik and Shembekar [13]
system, was equal to approximately 230 GPa. The superscript | Indicates the lower
bound from the Hashin model for the transversely isotropic tows. The subscript m
indicates that the respective property is for that of the effective matrix.

As shown in Table 1(a), the bundie as well as interbundle matrix material is as-
sumed to be linear elastic and isotropic with a normalized elastic modulus E,=
0.0152 and Poisson’s ratiov,, = 0.35. The fiber volume fraction, which measures the
relative volume occupied by the fibers within the fiber bundles alone, was taken to
be C;=0.74. In this system, the matrix material both within the bundles as well as be-
tween bundles was considered to be fully dense and thus the matrix microporosity
parameters Cy, and C,,, were set to be zero. In addition, for consistency with the ap-
proach taken by Naik and Shembekar [13], the fiber and bundle coating model
micro-parameters were also taken to be zero. Thus, the remaining independent pa-
rameters involved in these soft-matrix woven system studies include the geometry
parameters a, b, g, / and [ associated with the woven morphology as shown in Fig-
ure 1, the matrix/fiber moduli ratio A,y = E./E} and the fiber volume fraction C;.

In the model implementation, auxiliary FORTRAN modules were developed as
needed to calculate the bundle mesoscopic properties. These properties are calcu-
lated using the bundle micromechanics presented as part of the analytical model-
ing presented in Part . For example, the bundle effective directional properties
corresponding to the system microconstituents reported in Table 1(a) obtained via
these auxiliary modules are those reported in Table 1(b). It is important to note that
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Table 1. Non-dimensional input and
output parameters for the soft-matrix system.

(a) Soft-Matrix—Input Parameters

T-300 Carbon Epoxy Resin Volume
Fiber Matrix Fractions Geometry
E =10 En = 0.0152 Cy=0.74 a=10
E =0.174 V= 0.350 Com = 0.26 b =0.05
G, = 0.104 Cn=10 g=00
Gr = 0.0622 Crmp= 0.0 h =01
v, = 0.260 I =10
vy = 0.309
(b) Soft-Matrix—Mesoscopic Output
Effective Effective Overall
Tow Matrix Volume Fractions
Ein = 0.744 Em = 0.0152 Vir = 0.319
E}, = 0.0631 Gm = 0.00564 Viarp = 0.319
Giz = 0.0279 v = 0.350 Vinatrix = 0.363
G5y = 0.0217
V12 = 0.280
Vi, = 0.384
(c) Soft-Matrix—Eftective Unit-Cell Properties
FEA FEA
Property P-MLT PS-MLT S-MLT SP-MLT Single Multiple
l;'x 0.249 0.247 0.119 0.150 0.194 0.250
Gy 0.0198 0.0191 0.0184 0.0191 0.0178 0.0178
Py 0.0632 0.0700 0.0525 0.0541 0.264 0.0502

the mesoscopic elastic properties are needed as input data to the analytical MLT
and the 3-D numerical finite element models. For the specific set of inputs outlined
in Tables 1(a) and 1(b), each of the MLT and Finite Element models were used to
compute the effective unit-cell properties, and the results are listed in Table 1(c).
These results are included in Figure 3 and the corresponding discussion below ap-
plies directly to the data reported in the above table. Table 2 includes results from
the Naik and Shembekar 2-D-WF [13] model as well as resuits obtained using the
MLT and Finite Element models developed in Part I, all with matching input pa-
rameters. The geometry model used for the ML T and finite element models is dif-
ferent than that of the 2D-WF, and as such, slight differences are expected in the
results. While the 2-D-WF and MLT results are in good agreement, distinct differ-
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Figure 3. The in-plane effective elastic moduli and Poisson’s ratio for a soft-matrix woven
composite with the bundle undulation ratio b/a. The results were obtained for a system with fi-

bervolume fraction C; = 0.74, bimaterial matrix/fiber moduli ratioEm /E[ = 0.0152, and other
unit-cell properties consistent with Table 1.

ences exist between the finite element and analytical results. These discrepancies
will be discussed in detail in the following paragraphs.

As discussed earlier, the effective properties of a woven composite system can
be calculated analytically using the ML T approach in conjunction with the four in-
tegration/averaging schemes presented in Part I. These schemes are developed us-
ing fundamental assumptions on the distribution of the force and moment resul-
tants as well as assumptions on the spatial dependency of the mid-plane strains and
curvatures. For example, the Parallel-MLT [P-MLT, see Equation (34) in Part I]
scheme assumes that the mid-plane strains and curvatures are constant through a
given cross section in either the x or y direction. As such, the averaging force and
displacement scheme reduces to the averaging of the spatially dependent laminate
stiffnesses. On the other hand, the Parallei-Series-MLT [PS-MLT, see Equation
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Table 2. Effective properties of a polymer matrix woven fabric composite
predicted by the model of Naik and Shembekar [13] and the analytic and
finite element models developed in Part I.

Effective 2-DWF[13] MLT 2-DWF[13] MLT  FESingle FE Multiple

Property (PS) (PS) (SP) (SP) Ply Plies
éx 0.249 0.247 0.1585 0.150 0.194 0.250
Gy 0.0189 0.0191 0.0188 0.0191 0.0178 0.0178
Vxy 0.076 0.070 0.061 0.054 0.26 0.050

Actual Properties for a Reference Modulus of E{ = 230 GPa

E,GPa 57.2 57.0 35.7 34.4 44.6 575
G,, GPa 4.34 4.40 4.34 4.40 4.09 4.09
Vay 0.076 0.070 0.061 0.054 0.26 0.050

(37) in Part I] model assumes that the force and moment resultants are constant on
the cross section which is perpendicular to the loading axis while its orthogonal
cross section is subjected to constant mid-plane strains and curvatures. The
Series-Paralle]l-MLT [SP-MLT, see Equation (36) in Part 1] scheme is developed
based on the reverse assumption from the PS-MLT scheme whereas the Series-
MLT [S-MLT, see Equation (35) in Part 1] scheme assumes constant force and mo-
ment resultants for any cross sections perpendicular to the x and y axis respec-
tively.

The in-plane effective elastic properties estimated for soft-matrix woven com-
posites obtained using the above mentioned averaging schemes are shown in Fig-
ure 3. The results presented in the figure were obtained using the woven constitu-
ent properties reported by Naik and Shembekar [13]. In addition to the analytical
estimates which are represented by the solid lines, in Figure 3, finite element re-
sults obtained using a single woven layer model as well as results corresponding to
the effective elastic response of a laminate comprised of a large number of sym-
metrically placed woven plies are also reported using the “x” and “3” symbols re-
spectively. As shown in the figure, the in-plane effective elastic and shear moduli
are normalized with respect to a reference modulus which for this study was taken
to be equal to the longitudinal fiber modulus £ . Thus, in Figure 3(a), the normal-
ized effective modulus £, = E./E] is plotted against the relative bundle height to
bundle wavelength ratio (see Figure 1) as measured through the non-dimensional
bundle geometry parameter 6/a.

It is important to note that while keeping the interbundle space g/a constant, the
overall bundle volume fraction remains constant. At the same time the bundle
cross-sectional shape and the orientation of the principal material directions
within the bundles change as the aspect ratio b/a changes. For example, for a fixed
interbundle space of g/a = 0 for the results shown in Figure 3, as the ratio b/a in-
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creases the amplitude of the sinusoidal shape of the bundle cross sections and the
out-of-plane rotation of the principal material directions of the fiber bundles in-
crease. Because the overall tow volume fractions Vs, and V.., and the fiber vol-
ume fraction Cyremain constant, it is expected that the actual shape of the bundle
cross section will have a dramatically smaller effect on the results than the out-of-
plane rotation of the fiber bundles.

The trends in the effective normalized shear modulus Cﬂv',}. = GU,/E{ and the in-
plane major Poisson’s ratio v,, with respect to the bundle geometry parameter b/a
are shown in Figures 3(b) and 3(c) respectively. As in Figure 3(a), in the latter fig-
ures, the analytical estimates obtained using the four averaging methods discussed
in Part | are represented by the solid lines and are labeled appropriately for each
model, whereas the single and multiple ply finite element resulits are shown using
the “x” and “00” symbols respectively.

As shown in the above figures, the analytical estimates obtained using the
P-MLT, S-MLT, SP-MLT and PS-MLT models appear to fall within a relatively
narrow bandwidth for the shear modulus shown in Figure 3(b), whereas they ex-
hibit appreciable deviation from one another in predicting either the effective elas-
tic modulus E. and Poisson’s ratio v., shown in Figures 3(a) and 3(c) respectively.
This apparent deviation between the predictions obtained using the four averaging
schemes is shown to be greater for the effective elastic modulus £, at low values of
the geometry parameter b/a while diminishing with increasing b/a. On the other
hand, in Figure 3(c), the reverse trend is shown to dominate the deviation between
the analytical Poisson’s ratio predictions obtained using the four averaging
schemes with the largest deviation observed to be associated with relatively thick
plies corresponding to b/a = 0.5.

The analytical results reported in Figure 3(a), with the exception of those corre-
sponding to the P-MLT model, compare quite well with the results reported by
Naik and Shembekar [13]. In making the comparison of the two sets of results, it is
important to note that the ratio b/a used to plot the results in Figure 3 is equal to 1/2
h/a used to plot the results in Reference [13]. All input parameters except #/a are
equal for each set of results, and u/a = 0.6 for the plot in Reference [13] while w/a s
effectively equal to 1.0 for Figure 3(a). The dimension u is the distance between
the flat regions of the fiber bundles measured in the plane of the unit-cell, and is not
included in the current model. As u approaches 0 the geometry presented in Refer-
ence [13] approaches that of the earlier mosaic model of Ishikawa and Chou
[7-12], and as u approaches 1 the geometry model of Reference [13] approaches
the geometry shown in Figure 1 with some minor differences.

With the above in mind, it is clear that the P-MLT predictions reported in Figure
3(a) exhibit a downward trend with the ratio b/a whereas Naik and Shembekar’s
predict that the effective modulus E, remains constant with b/a or h/a. The authors
find this discrepancy somewhat puzzling in light of the observed agreement be-
tween the results obtained using the S-MLT, SP-MLT and PS-MLT averaging/in-
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tegration models. While there are differences in the geometries as outlined above,
their effects on the overall effective elastic response of the woven composite are
expected to be minimal and could not explain the difference between the P-MLT
results reported in Figure 3(a) and those reported in Reference [13].

It can be shown that the expression for the effective modulus resulting from the
parallel averaging/integration scheme reduces to the simple rule of mixtures if
Bﬁ = 0y = 0 everywhere in the unit-cell and if the Poisson’s ratios of each phase
equal those of all other phases, and is given by

Ex = Vﬁ// Ell + Vwarp EZZ + Vmulrix EW (1)

where Vi, Viarp, and Viaric are the overall volume fractions of the fill tow, warp tow,
and interbundle effective matrix, respectively. The terms En, E,,, and E,, are the
longitudinal and transverse effective moduli of the tows and the effective modulus
of the interbundle matrix, respectively.

The results can be expected to approach the rule of mixtures even for systems
with mismatching Poisson’s ratios. For the P-MLT model the above angles of
orientation approach zero for b/a - 0, and for the 2-D-WF model they approach
zero for both b/a = 0 and u/a - 0. It can also be shown from Equations (1), (2),
and (6) presented in Part I that the overall volume fractions of the current model
are not a function of 5. As aresult, the overall volume fractions reported in Table
1 hold for /a - 0, and the resulting modulus computed using Equation (1) is
E, =0.263 as b/a -» 0 which is in very close agreement with Figure 3(a) as well
as the respective plot in Reference [13].

The predicted downward trend in the normalized £, with the aspect ratio b/a is
intuitively consistent and can be explained as follows. As discussed above, the fi-
ber bundies, at the mesoscopic level of modeling are considered to be elastically
orthotropic with a longitudinal to transverse moduli ratio equal to Ei/E2. In
soft-polymer matrix composites, the stiffer and stronger fibers are used to reinforce
the softer and often weaker matrix material. As a result, in such unidirectionally
reinforced systems, the longitudinal modulus E,; which is dominated by the prop-
erties of the fiber reinforcements is often much higher than their transverse modu-
lus E;; which is matrix dominated. In woven systems, the unidirectionally rein-
forced bundles themselves influence the overall effective properties of the woven
composite consistent with the woven morphology. For example, in systems with
small bundle undulations, i.e., small &/a ratios, the longitudinal bundle modulus
E\1 is expected to have a disproportionately larger influence on the unit-cell effec-
tive modulus £, compared to the influence of the transverse bundle modulus E;,.
However, as b/a increases, the bundle undulations also increase and thus, the rela-
tive influence of Ex, on £, should increase as well. Since, in soft-matrix systems
F>; 1s much smaller than E,1, and as discussed above the influence of E,, on E, in-
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creases with b/a, it is consistent that the trends in £, are shown in Figure 3(a) to de-
crease with b/a. As will be seen later on this study, this behavior is limited to
soft-matrix systems and it does not apply to stiff-ceramic matrix woven composite,
for their effective elastic response was found to be rather insensitive to the undula-
tion ratio b/a.

As mentioned earlier in this section, single and multiple ply finite element re-
sults are also reported in Figure 3(a), 3(b), and 3(c) using the “x” and “0” symbols
respectively. In Figure 3(a) it is shown that the single and multiple ply finite ele-
ment predictions for the in-plane elastic modulus exhibit noticeable differences
from one another for composites containing weaves with bundles of relatively
large wavelength, i.e., b/a <0.1. The single and multiple ply finite element predic-
tions for the shear modulus shown in Figure 3(b) appear to be identical throughout
the b/a ranges considered. The most dramatic difference however between the single
layer versus a multiple ply laminate response appear to be associated with the
effective Poisson’s ratio predictions shown in Figure 3(c). At low b/a values,
the Poisson’s ratios predicted using a single layer finite element model are calcu-
lated to be in the range 0.25 < v,, < 0.35whereas for the same b/a values the
multiple ply laminate effective Poisson’s ratio is calculated to be in the range
0.05 < v,, < 0.08. It is of interest to observe that the multiple ply finite element
predictions for the in-plane Poisson’s ratio are shown to be in better agreement
with the analytical predictions when compared to the single ply results. This is not
a surprising finding since the Modified Lamination Theory (ML T) approach used
in the analytical model does not account for transverse interlaminar stresses and
the associated out-of-plane twist which may be induced during uniaxial tension as
a result of the woven microstructure. Clearly, in accordance with Figure 4(a), a
soft-matrix single ply woven system may experience appreciable out-of-pane
twist during remote tension whereas the lateral constraints associated with a multi-
ple ply symmetric laminate, which is better represented by the analytical modeling
assumptions used in Part I, do not allow for such twisting to take place [see Figure
4(b)]. Based on the comparison between the analytical predictions and the multi-
ple ply laminate results it also appears that the Parallel-MLT model is, in an overall
sense, in closer agreement with the 3-D finite element results. Thus, henceforth we
shall use the Parallel-MLT model in obtaining further analytical estimates of the
in-plane elastic effective properties of soft-matrix woven composites.

The trends in the normalized in-plane elastic modulus E,, shear modulus G,y
and Poisson’s ratio v,, with the bundle geometry parameter b/a for systems of vari-
ous interbundle space as measured by the normalized parameter g/a are shown in
Figure 5. The solid lines represent analytical predictions obtained using the
Parallel-MLT model whereas the “x” and “03” symbols represent finite element
results which correspond to the top curve and the “+” and “<O” symbols represent
finite element results which correspond to the bottom curve in each figure. As
shown in the above figures, the top solid line corresponds to a system containing
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Undeformed Unit-Cell
Outline

Uy = 1

Figure 4. The deformed mesh for a soft-matrix woven unit cell withb = 0.1. (a) A single ply
with traction free boundary conditions applied to the top and bottom faces. (b) A multiple ply
system modeled with symmetry conditions applied to the top and bottom faces.

no space between bundles, whereas the results represented by the bottom curves
reflect the effective elastic response of systems with normalized distances equal to
g/a= 0.4 between bundles. As before, it is important to note that at fixed /a and
Cyvalues, an increase in the space g/a between bundles refers to a new woven
system whose bundles are narrower with fewer fibers and are placed further apart
from one another. This is achievable by increasing the interbundle effective
matrix material with increasing g/a while decreasing the bundle cross
section. As a result the overall tow volume within the non-
dimensionalized unit-cellis ¥,,, = Vs + Vi, = 0.638 for g/a=0 [from Table
1(b)] and View =0.384 for g/a=0.4.1In light of this, a constant fiber volume fraction
Cralso implies that fewer fiber reinforcements are used overall.

As evident from Figure 5, rather good agreement is observed to exist between
the analytical results obtained using the P-MLT model and the finite element mul-
tiple woven layer system predictions. As expected, the in-plane effective elastic
stiffness and shear moduli for the woven systems under consideration reduce with
increasing g/a and increasing b/a while an increase in the effective Poisson’s ratio
is predicted as shown in Figure 5(c). The analytical results for £, are shown to be
in better agreement with the multiple ply finite element results (“0” and “&” sym-



Elastic Response of Plain Weave. Fabric Composites: Part I1 1487
bols) at low and high b/a values. As shown by the schematic in Figure 5(a), low /a
values correspond to rather thin section woven plies or laminates, whereas high
b/a aspect ratio values correspond to fairly thick plies or laminates. For the latter
systems, the basic assumption that the cross sections of the woven layer/laminate
remain plane after deformation may be violated, which may explain the subtle but
noticeable deviation of the analytical results from the 3-D finite element predic-
tions as b/a -> 0.5. The effective shear modulus results shown in Figure 5(b), sug-
gest that the analytical model predictions are slightly higher than those obtained
from the 3-D finite element models. This is consistent with the results reported in
Figure 3(b), where the P-MLT model is shown to predict higher effective shear
moduli compared to the predictions obtained by the other three averaging schemes
and the 3-D finite element model. As will be shown later in this section, shear
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Figure 5. The in-plane effective elastic properties for a soft-matrix woven composite with the
bundle undulation ratio b/a for woven systems with bundle spacing equal to g/a = 0.0 and
0.4. The results were obtained for a system with fiber volume fraction C; = 0.74, bimaterial
matrix/fiber moduli ratio En/E{ = 0.0152 (see Table 1).
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Figure 6. The in-plane effective elastic properties for a soft-matrix woven composite against
the bundle fiber volume fraction Gy, with interbundle matrix dispersed porosity density Cy,, =
0.6. (see Table 1 for remaining parameters.)

modulus estimates which are in excellent agreement with the finite element results
are predicted by the P-MLT and the other three averaging schemes when stiff-
matrix woven composites are considered.

As discussed above, the results presented in Figures 3 and 5 were obtained un-
der fixed fiber volume fraction C. In Figure 6, C;, which is defined as the ratio be-
tween the volume occupied by the bundle fiber reinforcements to the volume of the
bundle itself, is varied from 0 to 0.75 while keeping the fiber/matrix moduli ratio
E?{ > E,, constant. Results corresponding to matrix porosity Cn, equal to 0.0 and
0.6 are presented. As expected, for a given combination of fiber and matrix materi-
als asreflected through the choice of £ { and E,,suchthat E} >E,, and under fixed
matrix porosity Cy,, the in-plane elastic moduli £, and E, increase with increasing
bundle fiber volume fraction Cy. The analytical P-MLT predictions shown in Fig-
ure 6(a) appear to be in excellent agreement with the multiple ply 3-D finite ele-
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ment results at all Cy values, and in good agreement with the laterally uncon-
strained single ply finite element results at low Cyvalues. Also at low Crvalues, the
analytical P-MLT in-plane effective shear modulus results G,, shown in Figure
6(b) appear to be in excellent agreement with their numerical FE counterparts. As
in Figure 3(b), the P-MLT shear modulus predictions are shown to be higher than
the FE results. The results presented in Figure 3(b) also suggest that the deviation
of the analytical and the 3-D FE results increase with increasing bundle fiber vol-
ume fraction C;. In addition, the results reported in Figure 6(b), suggest that an
overall non-linear dependency exists between the in-plane shear modulus G, and
the bundle fiber volume fraction Cr.

The Poisson’s ratio v,, trends with the bundle fiber volume fraction Crare shown
in Figure 6(c). The analytical P-MLT predictions are shown to be in remarkable
agreement with the multiple ply 3-D FE results. Consistent with the results re-
ported in Figure 3(c), the FE single ply estimates reported in Figure 6(c) appear to
be substantially higher than both the analytical and 3-D multiple ply predictions.
The numerical and analytical results shown for C; = 0.75 and C,,, = 0.0 in Figure 6
correspond with the results plotted at 5/a = 0.05 in Figure 3 ( in which case C; =
0.74). A strong correlation between the two sets of data is observed.

The dependency of the effective properties of the woven system on the elastic
moduli ratio E,/E ] for various degrees of fiber transverse anisotropy measured
through the parameter £ {/E 7 are shown in Figure 7. These results were obtained
using a woven cell geometry consistent with that used in Reference [13]. Thus, in
obtaining the above results, a bundle aspect ratio b/a = 0.05, a bundle fiber vol-
ume fraction Cy= 0.74, and an interbundle matrix porosity C», = 0.0 were used.
The results shown in Figure 7 encompass both soft-matrix as well as sziff-matrix
woven system responses. More specifically the trends in the woven effective
elastic properties obtained for £, /E { < 1.0 correspond to the soft-matrix re-
sponse whereas those obtained for E,,/E} > 1.0 correspond to the stiff-matrix
response. Here the terms soft-matrix and stiff-matrix are used in a general sense
but they can often be used to represent soft-polymer and stiff~ceramic matrix
woven composites respectively.

In accordance with the results reported in Figure 7(a), an overall agreement is
shown to exist between the P-MLT analytical predictions and the 3-D single and mul-
tiple ply FE results. The comparison between the analytical and numerical results
shown in the above figure indicate that there exists a better agreement between the two
methods when predicting either the effective elastic modulus E, [Figure 7(a)] or the
shear modulus GAA,. shown in Figure 7(b), when compared to the Poisson’s ratio results
reported in Figure 7(c). More specifically, the single ply FE Poisson’s ratio predic-
tions for soff-matrix systems, are shown to deviate from the multiple ply FE results
and the results obtained analytically using the P-MLT model. This is consistent with
earlier results reported in Figures 3, 5, and 6. However, as the ratio £, /E 7 becomes
greater than unity, all in-plane effective elastic properties predicted either analytically
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Figure 7. The in-plane effective elastic properties for a soft-matrix woven composite
with EfT/E{ equal to 0.1, 0.4, and 1.0, and remaining parameters given in Table 1.

or numerically using the single or muttiple ply 3-D FE models are shown to be in
good agreement for the system under consideration. These trends reinforce further
the selection of the P-MLT averaging analytical model as the one that best predicts
the effective properties of sofi- and stiff-matrix woven composites. It is of interest to
observe that the transverse fiber modulus has a more pronounced effect on the elastic
moduli E, and E; as well as on the major Poisson’s ratio v,, but has little effect on the
in-plane effective shear modulus G,,.

3. STIFF-MATRIX WOVEN COMPOSITE RESULTS

Unlike the soff-matrix results presented above, which were mostly developed
for comparison with results predicted by existing polymer matrix models, the
stiff-matrix results are entirely new and can be used to interpret experimental data
obtained using woven ceramic matrix composite test coupons. As discussed in the
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modeling section of this work, several micromechanical constituent and woven
geometry aspects have been incorporated into the effective properties models as
needed to model more realistically the microstructure of woven CVI ceramic ma-
trix composite such as the one shown in the micrographs provided by Zok et al. [2]
in Figure 2.

Unlike the soft-matrix woven system studies, these studies assume that the fi-
ber reinforcements within the longitudinal and transverse tows are homogene-
ous elastic and isotropic with an elastic modulus Eyand Poisson’s ratio vy. In addi-
tion, in these studies the fibers are assumed to be coated by a thin elastic isotropic
coating of modulus £ and Poisson’s ratio v.. The volume fraction of the fiber
coating material is denoted by Cr.. The fully dense bundle and interbundle matrix
material is characterized by a modulus E,, and Poisson’s ratio v,,. However, in
this model (see Reference [1]), differential matrix porosities are allowed to exist
in the matrix within the bundles and in the matrix between bundles whose densi-
ties are measured via the respective porosity volume fractions Cy, and Cpp. In ad-
dition, the stiff-matrix effective properties micromechanics model can also ac-
count for the presence of an altogether separate bundle coating phase whose
isotropic elastic modulus is E;. and Poisson’s ratio v, and its volume fraction is
Cs.. Thus, the stiff-matrix results presented herein, when compared to those dis-
cussed for sofi-matrix systems, include additional parameter studies as needed to
elucidate the effects of bundle matrix porosity Cs,, interbundle matrix porosity
Cump, volume fraction of fiber coating C;. and volume fraction of bundle coating
Csc. The stiff-matrix results are presented in Figures 8—11 and 15-17 and shall be
discussed next.

As in the case of the soft-matrix studies, the results reported in the above men-
tioned figures were obtained through consistent non-dimensional studies using
the analytical and 3-D finite element models discussed in the modeling part of
this work (PartI). As indicated in Table 3(a), in these studies the reference elastic
modulus is taken to be the isotropic fiber modulus E; such that in the non-
dimensional calculations £, = 1.0 was used. The non-dimensional properties for
the fiber coating, dense matrix material and bundle coating are given in Table
3(a). In addition, in Table 3(a) various microconstituent volume fractions as well
as the non-dimensional woven-cell geometry parameters used in these stiff-
matrix studies are also given. The resulting mesoscopic properties for the “ide-
alized” two-phase woven system indicating the bundle and interbundle matrix
effective properties obtained through the bundle micromechanics and porous
matrix models are shown in Table 3(b). It is important to note that these latter
properties are the ones given as input in the 3-D finite element numerical studies.
Results from the MLT and Finite Element models corresponding to the input of
Tables 3(a) and 3(b) are listed in Table 3(c). In the above tables, the superscript /
indicates the lower bound from the Hashin model for the transversely isotropic
tows, which were selected for this analysis. The subscript 7 is used to denote ef-
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Table 3. Non-dimensional input and output parameters
for the stiff-matrix woven system.

(a) Stiff-Matrix—Input Parameters

Fiber Bundle Volume
Fiber Coating Matrix Coating Fractions Geometry
Er=10  Ep =025 En=20  Epc=05 Cr= a=1 o
=02 Ve = 0.25 vy =03 Vpe = 0.25 Ci. = 0.05 b=0.1
Cpm = 0.1 g=o. 1
Cbp =01 [7 = 0.3
Cpc = 0.25 I =10
Cn=07
Cpp =03
(b) Stiff-Matrix—Mesoscopic Output
Effective Effective Overall
Tow Matrix Volume Fractions
Eiy =0.737 Er = 0.978 Vyy = 0.272
El, = 0.656 Gﬁ =0.387 Viarp = 0.272
G2 = 0.271 Vi = 0.264 Voatrix = 0.456
Ghy = 0.264
\;12 = (0.222
vhs = 0235
(c) Stiff-Matrix—Effective Unit-Cell Properties
FEA FEA
Property P-MLT PS-MLT S-MLT SP-MLT Single Multiple
éx 0.824 0.820 0.817 0.820 0.823 0.823
Gy 0.324 0.323 0.321 0.322 0.322 0.322
Yy 0.239 0.238 0.237 0.238 0.237 0.237

fective matrix properties. Here we also note that in comparing Tables 1 and 3 the
overali fiber volume fractions of the soff- and sziff~matrix systems are computed
to be approximately 0.27 and 0.47, respectively.

In order to assess the effectiveness of the four analytical averaging schemes,
i.e., the P-MLT, S-MLT, PS-MLT and SP-MLT models, the in-plane effective
properties of stiff-matrix woven composites are plotted in Figure 8(a) against the
aspectratio b/a. As in the soft-matrix studies, in the same figure we also report nu-
merical results obtained using the single and multiple ply 3-D finite element mod-
els. As shown in Figure 8, the analytical predictions obtained using the four aver-
aging schemes mentioned above are found to be in excellent agreement with both
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the single as well as the multiple ply FE results and appear to be rather insensitive
to the aspect ratio b/a. The effect of the out-of-plane rotation will be most apparent
for cases in which the longitudinal to transverse bundle effective modulus ratio
Ell/ﬁzz is large. For the results shown in Figure 3, E”/Ezz = 11.8 while for the re-
sults shown in Figure 8§, E,/E,, = 1.12. The differences between these two cases
show that the changes in the effective properties in Figure 3 are largely a result of
the change in the bundle waviness.

While the results reported in Figure 8 correspond to a stiffer dense matrix woven
system, i.e., E. = 2Ej, the presence of the porosity [porosity densities are given in
Table 3(a)] reduce the effective interbundle matrix modulus to a level comparable
to that of the fiber modulus, i.e., £ = 0.978Efor even to that of the effective longi-
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Figure 8. The in-plane effective elastic properties versus woven bundle aspect ratio b/a for
a stiff-matrix woven composite as predicted with the aid of the four stiffness integration
schemes indicated above. All results were obtained for a system with fiber volume fraction
C; = 0.5, bimaterial matrix/fiber moduli ratio Em/E{ = 2.0, and other unit-cell properties con-
sistent with Table 3.
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tudinal bundle modulus which was calculated using bundle micromechanics to be
E, = 0.737E;. As such one may argue that the agreement between the various
model predictions reported in Figure 8 may to a large extent be due to the lack of
strong material dissimilarity in the system under consideration. However, the re-
sults reported earlier in Figure 7, wherein an excellent agreement between the 3-D
FE and analytical model predictions is also observed for strongly dissimilar fi-
ber/matrix pairs, lessen the significance of this argument and further strengthen
the conclusion made above regarding the effectiveness of the analytical models in
predicting the effective elastic response of stiff-matrix woven composite com-
prised of complex microstructures.

In light of the above observations, we shall adopt the P-MLT averaging scheme
model in obtaining further property estimates for stiff-matrix woven composites.
Recall that the same P-MLT model was used in the sofi-matrix parameter studies
presented in the previous section. Thus, in Figure 9, P-MLT analytical effective
property estimates are plotted along with 3-D FE results against the aspect ratio
b/a. As indicated, the two curves included in each figure represent results obtained
for woven systems with interbundle spacing g/a equal to 0.0 and 0.4. As before, the
in-plane effective properties predicted for sziff-matrix woven systems, appear to
be rather insensitive to the aspect ratio /a. In addition, the P-MLT predictions are
shown to be in excellent agreement with the 3-D FE results. At this point, it is
worth stressing that the single and multiple ply FE results appear to be remarkably
close to one another which is unlike the trends exhibited by the soff-matrix woven
systems.

In Figure 10, a broad array of results aimed at assessing the effects of the
bundle fiber volume fraction Cy, the fiber coating volume fraction Cy. and the
bundle coating volume fraction Cj. on the in-plane effective elastic properties
of stiff-matrix woven composites are presented. More specifically, the results
in the left column of plots in the figure, were obtained by varying the bundle fi-
ber volume fraction C;while keeping the fiber and dense matrix material prop-
erties as well as the woven geometrical morphology fixed. As indicated in this
column of plots, the sum Cs+ Csn + Cip = 0.7 was also kept fixed while varying
Cyas required to maintain an overall constant tow volume relative to the total
volume occupied by the woven unit-cell. In order to isolate individual parame-
ter effects, four curves of results each corresponding to a fixed bundle porosity
Cyp, are reported in Figure 10. For comparison purposes, 3-D single as well as
multiple layer FE results corresponding to each of the analytical curves are also
reported in the figure. As shown in the figure, the P-MLT analytical predictions
are in remarkable agreement with the FE results. This strongly suggests that the
analytical micromechanics models developed as part of this work and reported
in the companion paper (Part I), can be used to accurately predict the effective
elastic response of stiff-matrix woven systems comprised of complex micro-
structures.
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Figure 9. The in-plane effective elastic properties versus woven bundle aspect ratio b/a for
a stiff-matrix woven composite using the P-MLT stiffness integration model and parameters
listed in Table 3.

Since the bundle matrix porosity is kept constant along each curve in the
left column of plots in Figure 10, and since the sum C;+ Cym + Cy, = 0.7 is also
fixed, it follows that for systems corresponding to the same curve the bundle
fiber volume fraction is increased while decreasing the respective bundle ma-
trix material. Thus, the allowable range for Crdecreases for results obtained
at higher bundle matrix porosity C,,. The above observation justifies the rea-
son why the effective elastic property curves shown in each of the plots in
Figure 10 are reported over a decreasing Cyrange with increasing C;, parame-
ter values. Overall, the reported effective elastic properties exhibit a down-
ward trend with increasing bundle fiber volume fraction C;. This is an ex-
pected behavior since the addition of more relatively compliant bundle fibers
should indeed result in an overall stiffness reduction of the woven stiff-matrix
system. In contrast to the above results, an increase in the effective elastic
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moduli with increasing Cy is predicted for soft-matrix composites as shown in
Figures 6(a) and 6(b).

The results presented in the middle column of plots in Figure 10 show the influence
of a thin fiber coating on the overall effective elastic response of sziff-matrix woven
composites. In obtaining this set of plots, the sum Cg + Csm + Csp = 0.25 was kept con-
stant while varying the volume fraction of fiber coating Cy.. Each curve in the above set
of data, also corresponds to a fixed value of the bundle matrix porosity parameter Cj,.
Thus, the simulated increases in the volume fraction of fiber coating C, which trans-
lates to an increase in the fiber coating thickness, takes place while decreasing the rela-
tively stiffer bundle matrix material. For example, and in accordance with Table 3(a),
these results were obtained using an elastically isotropic fiber coating of modulus £, =
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Figure 10. The in-plane effective elastic properties for a stitt-matrix woven composite. The
results are plotted against three woven bundle volume fractions (C;, Cyc, and Cy.), and
were obtained for a system with woven bundle aspect ratio b/a = 0.15, bimaterial matrix/fi-
ber moduli ratio Em/E{ = 2.0, and other unit-cell properties consistent with Table 3.
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0.25E;and Poisson’s ratio v, = 0.25. As before, the addition of a more compliant fiber
coating phase is predicted to yield a net reduction in the overall effective stiffness of
the stiff-matrix woven system under consideration.

The results reported in the right column of plots in Figure 10 highlight the de-
pendency of the in-plane effective properties of a stiff-matrix woven composite on
the volume fraction of bundle coating Cs.. As discussed earlier elsewhere [1-6].
CVI ceramic matrix composites exhibit a rather complex microstructure. Among
other aspects, the presence of a bundle coating has been identified by Zok et al. [2]
and Bordia et al. [5,6] as an altogether separate microstructural entity. In this work
and when compared with the other constituents, an elastically dissimilar bundle
coating is incorporated into the bundle micromechanics such that the effective
mesoscopic bundle properties are properly augmented to account for the bundle
coating influence. In accordance with Table 3(a), the results reported in the right
column of plots in Figure 10 have been obtained using bundle coating of isotropic
elastic modulus Es. = 0.5Eand Poisson’s ratiovs. = 0.25. Clearly, when Cs.= 0, the
bundle coating thickness is zero which increases with increasing Cj.. Since, as in-
dicated in Figure 10, this set of results was obtained keeping the sum Cs + Cpm +
Cs,=0.45 constant, it is important to stress that at a constant bundle matrix poros-
ity Cs,, the bundle coating thickness increase associated with the above set of re-
sults takes place by reducing the relatively stiffer bundle matrix volume fraction
Csm. As such, it is not surprising that the reported results also exhibit a downward
trend with increasing Cs..

In Figure 11, the in-plane effective elastic properties predicted analytically
using the P-MLT model and numerically via 3-D finite element models are
plotted against the dense matrix/fiber modulus ratio E./E;. Various results re-
flective of the effects of the elasticity of the bundle coating are presented.
Other than changing the matrix/fiber modulus ratio E,/Eralong the horizontal
axis, and the relative bundle coating modulus E;./E; for each curve as denoted
in Figure 11, the microstructural variables used in obtaining the above results
are those given in Table 3(a). As shown in Figure 11 sightly lower effective in-
plane elastic moduli are predicted for systems containing relatively soft bundle
coatings, i.e., Esc = 0.2E,. At the same time, the in-plane effective elastic stiff-
nesses are shown to increase almost linearly with E,/E;. The influence of the ra-
tio £,/Eron the Poisson’s ratio however appears to be less pronounced, for, the
predicted values appear to reach a plateau E,,/E; - 10.0. These results are con-
sistent with those reported earlier in Figure 7 obtained under the soff-matrix
woven system studies.

Overall, the results reported in Figures 8—11 are found to be in excellent
agreement with their respective single and multiple layer 3-D finite element
predictions. This, as discussed above, strongly suggests that the analytical
micromechanics models developed as part of this work can be used to accu-
rately predict the effective elastic response of stiff-matrix woven systems
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Figure 11. The in-plane effective elastic properties for a stiff-matrix woven composite
against matrix/fiber moduli ratio Em/E“L . All results were obtained for system with unit-cell
properties consistent with Table 3.

comprised of complex microstructures. The trends reported in the above figure
capture for the first time the influence of a rather complex microstructure on the ef-
fective elastic response of stiff-matrix woven composites such as the CVI ce-
ramic matrix woven systems studied by Zok et al. [2], Steyer and Zok [3],
McNulty and Zok [4], and Bordia et al. [5,6] and others. The results clearly
suggest that mechanically distinct microstructural entities such as the fiber
and bundle coatings, bundle matrix and interbundle matrix porosity and bun-
dle fiber volume fraction may affect in a critical manner the effective elastic
response of the woven composite. Thus, any attempt to minimize their influ-
ence and neglect their effects may lead to substantial errors in the interpreta-
tion of associated experimental data. At the same time, it is recognized by the
authors that the results presented herein are encompassing only the elastic re-
sponse of woven composites. In all likelihood, early on in their loading his-



Elastic Response of Plain Weave Fabric Composites: Part II 1499

tory, such microstructurally complex systems, may exhibit non-linearities in-
duced by the evolution of several types of micro-damage such as matrix
microcracking, bundle transverse cracking, bundle delamination, bundle cracking
and macroscopic ply delamination and failure in woven ply composite laminates.
In systems containing metal phases, plasticity may also play an important role in
the overall mechanical response of the woven composites. While studies aiming at
addressing some of the above non-linear phenomena and other complementary
studies aiming at improving the models used to obtain the results reported herein
are currently under way, the authors also feel that the models and results developed
and presented in this two-part series of papers, i.e., Part 1, and current paper, com-
prise the necessary first step for the development of a better understanding of the
mechanical response of soft-polymer, stiff-ceramic and even metal matrix
woven composites all of which may exhibitrather complex and distinctly dif-
ferent microstructures. The above discussion further highlights the need for
interdisciplinary studies around the triad of material processing and speci-
men fabrication, mechanical and microstructural characterization, and ana-
lytical and numerical modeling. It is thus recommended that the models and
results presented as part of this work, be used carefully in conjunction with
the proper mechanical and microstructural characterization of soff-polymer
and stiff-ceramic matrix woven systems as needed to interpret their possibly
limited elastic response.

4. WOVEN UNIT-CELL MICROSTRAINS AND MICROSTRESSES

In their experiments, Zok et al. [2] reported microstrains, measured on the
lateral free surface of a five woven ply CVI ceramic composite (see Figure 2),
which were either substantially lower or higher than the applied macroscopic
strain during uniaxial stretching. This result, although inadmissible when con-
ducting a tension test using a directionally homogeneous test coupon such as,
for example, a flat layered system loaded in one of its principal orthotropic di-
rections, it has been consistently observed by researchers testing woven com-
posite coupons. In the absence of rigorous mechanical models, several hy-
potheses aiming at justifying the above microstrain surface measurements
have been developed. A leading hypothesis is that the surface microstrains are
obtained as a resulit of local micro-bending induced during bundle stretching.
In order to assist in the clarification of the above issue, microstrain and mi-
crostress contours obtained using the 3-D finite element single woven ply
soft-matrix model are shown in Figures 12 and 14 and results for the stiff-
matrix model are shown in Figures 15-17. For consistency purposes, it is also
important to mention that the microstrain and microstress results shown in Fig-
ures 12—17, correspond to a bundle height aspect ratio of b/a = 0.2. Other spe-
cific model parameters are given in Tables 1 and 3 for the soft- and stiff-matrix
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Figure 12. Contour plots of the normalized microstrain exx relative to the global coordinate
system.

models, respectively. The strain results are normalized with the characteristic
strain &, = U./a where U, is the applied axial displacement. The stress results
are normalized with the characteristic stress o, = e .E. = U, E/a.

Contours of the component of strain in the global x direction are shown in Fig-
ures 12 and 15 for the soft- and stiff~matrix systems respectively. These results il-
lustrate two different patterns of micro-bending. In the case of the soff-matrix
composite shown in Figure 12, strong micro-bending is observed normal to the fill
tow centroidal axis and to a lesser extent transverse to the warp tow centroidal axis.
In the case of the stiff-matrix woven unit-cell shown in Figure 15, micro-bending is
observed transverse to the warp tow centroidal axis and normal to the centroidal
axis of the fill tow near the mid-section. In each case it is noted that the micro-
bending strains are transferred through the interbundle matrix. We also note that in
CVI ceramic systems, the length of the unit-cell / may often be on the order of 1-3
mm. As such the micro-bending phenomenon may be detected experimentally by
placing sufficiently small strain gauges in the regions of elevated strain as pre-
dicted by the finite element results.

Each of the normal stress components relative to the local material coordi-
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Figure 15. Contour plots of the normalized microstrain &, relative to the global coordinate
system.

nate system are displayed on the surfaces of the fill tow in Figures 13 and 16 for the
soft- and stiff-matrix woven composites, respectively. Micro-bending is
again illustrated in the contour plots of the o, components. The correspond-
ing shear stress components are shown in Figures 13 and 16. We note that the
out-of-plane shear and normal stress components are roughly an order of
magnitude less than those in the loading direction. The modified lamination
theory presented earlier is based on an assumption of plane stress, and while
we observe that out-of-plane stresses do exist, the assumption appears tobe a
good approximation. These components of stress, while relatively small,
may play an important role in the development of damage such as delamina-
tion. Also note the existence of regions of stress concentrations in Figures 13
and 16 which may give rise to microdamage during the early stages of loading
of the woven systems. Such evidence suggest that the overall effective re-
sponse of CVI ceramic matrix woven systems may exhibit appreciable non-
linearities early on in their loading history as a result of the stress-driven
damage evolution.
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Figure 16. Warp bundle surface contour plots of the non-dimensional normal stresses ex-
pressed with respect to the local system (1,2,3) aligned with the spatially varying local princi-
pal material directions.
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CONCLUSIONS

Extensive parameter studies, have shown that the Parallel (P-MLT) averaging
model predictions are in closer agreement with the 3-D finite element results for
both the soft- and stiff-matrix woven systems. The above studies, have shown that
the effects of microporosity either within the bundle or within the interbundle ma-
trix, as well as the concurrent or independent presence of relatively soft fiber and
bundle coatings may significantly reduce the effective elastic properties of the
composite. Soff-matrix systems such as polymer woven composites, were also
shown to exhibit a greater sensitivity to the effects of unit-cell geometry as com-
pared to the response of stiff-matrix systems such as the CVI ceramic matrix
woven composites. In addition, single and multiple woven symmetric layer finite
element studies suggest that the analytical MLT models substantially underesti-
mate the in-plane effective elastic properties of sofi-matrix single woven layer sys-
tems. At the same time the analytical models, were shown to be in excellent agree-
ment with the 3-D finite element results for soff-matrix multiple layer laminates as
well as for both single and multiple layer s#iff~-matrix woven systems. The models
which were developed in a companion study (Part I), can be used to interpret re-
lated experimental data obtained using either soff-polymer matrix or stiff~ceramic
woven composites aiming at establishing the elastic response of woven systems
comprised of relatively complex microstructures.

Microstress and microstrain finite element results suggest that the interior of
woven composites is subjected to a highly triaxial state of stress. High stress con-
centration was shown to dominate the near vicinity regions of the inner bun-
dle/interbundle matrix interface. Pronounced micro-bending induced during
stretching by the undulating bundles was also observed. These results, further
highlight the need for the development of non-linear models capable of predict-
ing the effective response of woven systems undergoing local microdamage that
would most likely evolve under the highly triaxial state of stress dominating the
interior of such woven systems even when macroscopically loaded in either pure
tension or shear.
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