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Measurements of the mixed mode fracture resistance of bimaterial interface have been shown to be appreciably influenced 
by the presence of loading point friction and by residual strain. Analyses of the effect of these phenomena on the strain energy 
release rate and on the phase angle of loading are presented. The analyses are used to interpret experimental measurements 
obtained on several bimaterial models. 

1. Introduction 

A test specimen for determining the mixed 
mode fracture resistance of bimaterial interfaces 
has been proposed (Charalambides et al., 1989). 
The specimen consists of a bimaterial beam tested 
in four-point flexure (Fig. 1). Analysis of this 
specimen (Charalambides et al., 1989) has been 
demonstrated that a steady-state regime obtains 
when the interface cracks reside between the inner 
loading lines. The corresponding phase angle of 
loading is of order ~r/4. The method thus samples 
the interface fracture resistance at a phase angle 
having importance to such problems as thin film 
decohesion (Drory et al., 1989) and fiber debond- 
ing in composites (Charalambides and Evans, 
1989). Subsequent to the initial analysis of the 
specimen, a comprehensive test program has been 
conducted (Cao, 1988; Cao and Evans 1989; Lund, 
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Fig. 1. Bimaterial notched four-point bending specimen with 
symmetrical interfacial cracks. 
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1988; Reimanis et al., 1989) as needed to fully 
calibrate the specimen and to identify relevant 
testing issues. The measurements have, in turn, 
highlighted additional aspects of the test that re- 
quire further analysis. The results of the analyses 
are described in this article, in conjunction with 
some typical data. The two most important experi- 
mental aspects of the test method not elucidated 
in the initial analysis concern the effects of fric- 
tion at the loading points and of residual strain 
caused by thermal expansion mismatch. An 
experimental measurement of particular relevance 
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Fig. 2. A typical experimental ]cad-displacement curve show- 
ing three loading/unloading cycles at three different crack 
lengths. 
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to the interpretation of friction concerns the hys- 
teresis in the compliance obtained upon loading 
and unloading following crack extension (Fig. 2) 
(Lund, 1988). Analysis of these phenomena will be 
presented first and then used to rationalize the 
experimental results. 

where 

~ * = q ' + e  In h 

with h being a characteristic dimension: in this 
case, the beam thickness (Fig. 1). 

2. N e a r  tip interface  m e c h a n i c s  

In general, the complex stress intensity factor K 
can be expressed in terms of its real Re and 
imaginary Im parts and /o r  its modulus I K [ and 
phase angle '/', 

K= R e ( K )  + i  I m ( K )  

- I KI  e i'/" (1) 

As discussed elsewhere (Charalambides et al., 
1989; Rice, 1988), the bimaterial stress intensity 
factor and phase angle x/, are scale sensitive; an 
issue more thoroughly addressed by Rice (1988). 
Consequently, it is more convenient for compari- 
son between materials to represent the interface 
fracture resistance locus in terms of trends in 
critical energy release rate fie, which is scale insen- 
sitive, with phase angle q', where ff is related to K 
by 

1 - ~'1 1 - v 2 

Gt G2 
f¢= KK (2) 

4 cosh 2 ( "~ ) 

1 1 - / 3  
e = ~  In 1+/3  

where 

× / ( - ~ ( 1  - v2) + (1 - vl)) 

is one of the plane strain Dundurs' parameters 
(Dundurs, 1968), and G i and J'i (i = 1, 2) are the 
shear modulus and Poisson's ratio for material 1 
and 2, respectively. While it is important to use q" 
to describe fracture data, it is convenient to pre- 
sent calculated phase angles using a scale in- 
variant form 

Kh i` = I KI  e ~** (3) 

3. A n a l y s i s  o f  fr ic t ional  e f f ec t s  

A schematic of the specimen with friction pre- 
sent is shown in Fig. 3. Assuming that Coulomb 
friction exists at the loading points, the friction 
load F is related to the applied load P through a 
friction coefficient/~: F = laP~2. The overall elas- 
tic behavior is then obtained by superposition of 
the solutions for the applied and friction loads. 
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Fig. 3. A schematic of  the loading conditions for the notched 
four-point bending specimen with symmetrical interracial 

cracks. 
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Solutions for the energy release rate, phase angle 
and mid-point displacement caused by the applied 
load 1 have been presented elsewhere (Charalam- 
bides et al., 1989). In this section, the correspond- 
ing frictional effects are derived. 

3.1 Energy release rates 

The energy release and stress intensity factor 
acquire steady-state for interface cracks in the 
constant moment region (Charalambides et al., 
1989), whereupon accurate steady-state energy re- 
lease rates can be obtained analytically. In par- 
ticular, the steady state ~ss, is related to the strain 
energies in sections ('i) and (ii) (Charalambides 
and Evans, 1989; Charalambides et al., 1989) of 
the composite beam (Fig. 4), such that, 

~s, = (1 - ~2) ~-~2 T 2 -  ~ (4) 
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Fig. 4. A schematic representation of a virtual crack extension. 
The strain energy densities in regions i and ii were used to 
calculate the associated steady-state energy release rate less. 

1 Henceforth, the superscripts ( )P  and ( )F  will be used to 
refer to quantities associated with applied and friction loads, 
respectively. 

where M is the net bending moment per unit 
width, 12 and I c are the second moments of 
inertia per unit cross-sectional area for the bottom 
layer and the composite beam, respectively, and 
X = (1 - 1,2)E2/(1 - ~,22)E1 for plane strain. The 
moments governed by the applied and friction 
loads are M p = Pl/2b and M r = - Fh/b, respec- 
tively, with h being the total height of the beam 
and l the spacing between the inner and outer 
loading lines (Fig. 1). Consequently, for Coulomb 
friction 

M = M p + M F 

_= e l  (1 - 
2b (5 )  

and the steady state energy release rate becomes, 

f f  s sE2b2h  3 

( 1  - 

311 
= 2 ~ ~ + Xrl 3 + 32t ~'~-----A--2 1 - " 7  

"I'll Jr- ~'0 2 

- k~(1 - # h / l )  2 (6) 

where 7/i = hi /h( i  = 1, 2) and k 1 is given in Tables 
1-4. The trends in ffs~ with the height to spacing 
ratio h / l  for various friction coefficients # are 
shown in Fig. 5. Evidently, the normalized ffs~ 
decreases with increasing values of # and h/l.  
Consequently, in order to minimize uncertainties 
associated with unknown frictional effects, rela- 
tively small h / l  should be used. Values in the 
interval 0.25 ~ ( h / l )  ~ 0.5 seem practical. It is 
also apparent that neglect of friction, when it 
exists, would result in an overestimate of ~s- 

Numerical methods give value for f¢ both in 
steady-state and when the cracks are between the 
inner and outer load lines. For this purpose, finite 
element procedures have been applied (Fig. 6), 
using 8-noded plane strain isoparametric elements 
with four stations for the integration of the ele- 
ment stiffness. The total number of elements varied 
with the crack length a l l  and height ratio hl /h  2. 
A focused mesh was used to discritize the near tip 
region (Fig. 6) and thus assure high accuracy 
(Charalambides and Evans, 1989; Matos et al., 
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T a b l e  1 

T h e  c o e f f i c i e n t s  ci ,  i = 1, 4, k , ,  i = 1, 3 a n d  u , ,  i = 1, 2 a s  a f u n c t i o n  o f  t h e  c r a c k  l e n g t h  f o r  m o d u l u s  r a t i o  E a / E  1 ~ 1.0 a n d  P o i s s o n ' s  

r a t i o  v 1 = 1"2 = 0.3  

a l l  c a c 2 c3 ('4 kl k2 k3 u 1 u 2 

0 . 0 9  2 .45  - 4 . 9 0  2 .05  - 4 . 1 0  10.21 - 4 0 . 8 4  4 0 . 8 4  6 . 3 9  - 1 2 . 4 4  

0 . 1 6  2 .45  - 4 . 9 0  2 .11  - 4 . 2 1  1 0 . 4 3  - 4 1 . 7 3  4 1 . 7 3  7 .37  - 14.41 

0 .31  2 .45  - 4 . 9 0  2 . 1 2  - 4 . 2 4  1 0 . 4 9  - 4 1 . 9 6  4 1 . 9 6  9 .88  - 19 .43 

0 . 4 7  2 .45  - 4 . 9 0  2 . 1 2  - 4 . 2 4  1 0 . 4 9  - 4 1 . 9 7  4 1 . 9 7  1 2 . 4 0  - 2 4 . 4 8  

0 . 6 3  2 .45  - 4 . 9 0  2 . 1 2  - 4 . 2 4  1 0 . 4 9  - 4 1 . 9 9  4 1 . 9 9  14 .95  - 2 9 . 5 8  

0 . 7 8  2 .45  - 4 . 9 0  2 . 1 2  - 4 . 2 4  10 .51  - 4 2 . 0 2  4 2 . 0 0  1 7 . 5 2  - 3 4 . 7 2  

0 . 9 4  2 . 4 6  - 4 . 8 9  2 . 1 2  - 4 . 2 4  1 0 . 5 6  - 4 2 . 0 4  4 1 . 8 5  2 0 . 1 2  - 3 9 . 9 0  

1 .09  2 . 4 7  - 4 . 8 0  2 . 1 2  - 4 . 2 3  1 0 . 6 2  - 4 1 . 7 1  4 0 . 9 8  2 2 . 7 5  - 4 5 . 0 9  

1 .25  2 .45  - 4 .51  2 . 1 2  - 4 . 1 9  1 0 . 5 0  - 3 9 . 9 0  3 7 . 9 4  2 5 . 4 0  - 5 0 . 1 6  

1.41 2 .25  - 3 . 9 6  2 . 0 9  - 3 .98  9 . 4 3  - 3 4 . 4 6  3 1 . 5 2  2 7 . 9 9  - 5 4 . 8 6  

1.5 I n n e r  l o a d i n g  l i n e  

1 .56  1 . 8 4  - 3 . 6 4  1 . 8 7  - 3 . 6 2  6 . 8 7  - 2 6 . 9 2  2 6 . 3 7  3 0 . 2 7  - 5 9 . 0 7  

1 .72  1 . 4 2  - 3 .65 1 . 5 3  - 3 .53  4 .35  - 2 1 . 1 5  2 5 . 7 7  32 .11  - 6 3 . 1 4  

1 .88  1 .05  - 3 .67  1 . 1 9  - 3 .53  2.51 - 1 6 . 0 5  2 5 . 9 1  33 .51  --- 6 7 . 2 5  

2 . 0 3  0 . 6 7  - 3 .72  0 . 8 6  - 3 .53  1 .19  - ] 1 .06  2 6 . 2 8  3 4 . 5 0  - 7 1 . 4 2  

2 . 1 9  0 . 2 9  - 3.91 0 . 5 2  - 3 .51 0 . 3 6  - 5 . 9 4  2 7 . 6 0  35 .07  -- 7 5 . 7 2  

2.5 O u t e r  l o a d i n g  l i n e  

1989). The results can be expressed in the non-di- 
mensional form, 

f f lE2b2h  3 

(1 - 

(,h 12 
= k 1 + k2-  ~ + k3k-- f f ' [  ] (7) 

where k~ (i = 1-3) are summarized in Tables 1-4. 
The trends in ff with a / l  and coefficient of 
friction in the interval 0 ~< # ~< 0.5 are also plotted 
on Fig. 7. 

T a b l e  2 

T h e  c o e f f i c i e n t s  c i, i = 1, 4,  ki,  i = 1, 

r a t i o s  v 1 = v 2 = 0 .3  

3 a n d  uj ,  i = 1, 2 a s  a f u n c t i o n  o f  t h e  c r a c k  l e n g t h  f o r  m o d u l u s  r a t i o  E 2 / E  1 = 2.5 a n d  P o i s s o n ' s  

a / l  c 1 c 2 c 3 c4 kl  k2 k3 ul u2 

0 . 0 9  1 . 6 9  - 3 .38  1 . 5 9  - 3 .18  9 . 2 9  - 3 7 . 1 5  3 7 . 1 5  8 .38  - 1 6 . 3 0  

0 . 1 6  1 .68  - 3 .35  1 .63  - 3 .27  9 . 4 5  - 3 7 . 8 0  3 7 . 8 0  9 . 3 0  -- 1 8 . 1 5  

0 .31  1 .68  - 3 .35  1 .65  - 3 .29  9 .51  - 3 8 . 0 3  3 8 . 0 3  1 1 . 6 6  - 2 2 . 8 6  
i 

0 . 4 7  1 .68  - 3 .35  1 .65  - 3 . 2 9  9 .51  - 3 8 . 0 4  3 8 . 0 4  14 .05  - 2 7 . 6 4  

0 . 6 3  1 .68  - 3 .35  1 .65  - 3 .29  9 .51  - 3 8 . 0 4  3 8 . 0 2  1 6 . 4 7  - 3 2 . 4 9  

0 . 7 8  1 .68  - 3 .35  1 .65  - 3 . 2 9  9 . 5 2  - 38 .01  3 7 . 9 4  1 8 . 9 4  - 37 .41  

0 . 9 4  1 . 6 8  - 3 .32  1 .65  - 3 .28  9 .53  - 3 7 . 8 5  3 7 . 5 9  2 1 . 4 3  - 4 2 . 3 8  

1 . 0 9  1 .67  - 3 .25  1 . 6 4  - 3 .25  9 . 4 8  - 3 7 . 1 7  3 6 . 4 3  2 3 . 9 7  - 4 7 . 3 6  

1 .25  1 .63  - 3 . 0 4  1 .63  - 3 . 1 8  9 . 1 7  - 3 4 . 9 7  3 3 . 3 7  26 .51  -- 5 2 . 2 2  

1 .41  1 .47  - 2 . 6 9  1 .57  - 2 . 9 8  7 . 9 6  - 2 9 . 7 5  2 7 . 8 0  2 8 . 9 5  - 5 6 . 7 2  

1.5 I n n e r  l o a d i n g  l i n e  

1 .56  1 . 1 8  - 2 .52  1 . 3 7  - 2 . 7 3  5 . 6 4  - 2 3 . 1 7  2 3 . 8 0  3 1 . 0 6  - 6 0 . 8 0  

1 .72  0 . 9 0  - 2 .53  1 . 1 0  - 2 . 6 8  3 . 5 0  - 1 8 . 0 8  2 3 . 4 3  3 2 . 7 2  -- 6 4 . 8 3  

1 .88  0 . 6 5  - 2 .55  0 . 8 4  - 2 . 6 9  1 .96  - 1 3 . 5 4  2 3 . 6 3  3 3 . 9 7  - 6 8 . 9 3  

2 . 0 3  0 . 4 1  - 2 . 6 0  0 . 5 9  - 2 .71  0 . 8 9  - 9 . 1 9  2 4 . 3 6  3 4 . 8 2  - 7 3 . 1 3  

2.5 O u t e r  l o a d i n g  l i n e  
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T a b l e  3 

T h e  c o e f f i c i e n t s  c~, i = 1, 4,  k~, i = 1, 3 a n d  u , ,  i = 1, 2 a s  a f u n c t i o n  o f  t he  c r a c k  l e n g t h  f o r  m o d u l u s  r a t i o  E 2 / E  1 = 10 a n d  P o i s s o n ' s  

r a t i o s  v 1 = v 2 = 0 .3  

a l l  c~ c 2 c 3 c 4 k 1 k 2 k 3 u 1 u 2 

0 . 0 9  0 . 7 8  - 1 .57  0 . 7 9  - 1 .57  6 . 4 0  - 2 5 . 6 2  25 .61  1 3 . 5 4  - 2 6 . 0 9  

0 . 1 6  0 . 7 7  - 1 .54  0 .81  - 1.61 6 .47  - 2 5 . 8 8  2 5 . 8 8  1 4 . 2 6  - 2 7 . 5 5  

0 .31  0 . 7 7  - 1 .54  0 .81  - 1 .63  6 .51  - 2 6 . 0 3  2 6 . 0 2  16 .15  - 3 1 . 3 2  

0 . 4 7  0 . 7 7  - 1 .53  0 .81  - 1 .62  6 . 5 0  - 2 5 . 9 8  2 5 . 9 6  18.11 - 3 5 . 2 4  

0 . 6 3  0 . 7 7  - 1 .53 0 . 1 8  - 1 .62  6 . 4 8  - 2 5 . 8 7  2 5 . 8 4  2 0 . 1 4  - 3 9 . 3 0  

0 . 7 8  0 . 7 6  - 1 .52  0 .81  - 1 . 6 i  6 . 4 3  - 2 5 . 6 4  2 5 . 5 7  2 2 . 2 5  - 4 3 . 5 0  

0 . 9 4  0 . 7 6  - 1 .50  0 . 8 0  - 1 .60  6 . 3 3  - 2 5 . 1 6  2 5 . 0 1  24 .41  - 47 .81  

1 .09  0 . 7 4  - 1 .45 0 . 7 9  - 1 .57  6 .11  - 2 4 . 1 3  2 3 . 8 4  2 6 . 6 2  - 5 2 . 1 7  

1 .25  0 . 7 0  - 1 .36  0 . 7 7  - 1 .52  5 . 6 2  - 2 2 . 0 6  2 1 . 6 5  2 8 . 8 2  - 5 6 . 4 6  

1 .41 0 .61  - 1 . 2 4  0 .71  - 1 .42  4 . 6 0  - 1 8 . 4 3  1 8 . 4 6  3 0 . 8 8  - 6 0 . 4 9  

1.5 I n n e r l o a d i n g  l i n e  

1 .56  0 . 4 8  - 1 .19  0 .61  - 1 .33  3 .11 - 1 4 . 3 5  1 6 . 6 0  3 2 . 5 9  - 6 4 . 3 4  

1 .72  0 . 3 6  - 1 .21 0 . 4 8  - 1 .33  1 .85 - 11 .11  1 6 . 8 6  3 3 . 9 0  - 6 8 . 3 2  

1 . 8 8  0 . 2 5  - 1 .26  0 . 3 5  - 1 .36  0 . 9 7  - 8 . 2 6  1 7 . 8 8  3 4 . 8 4  - 7 2 . 5 5  

2 .03  0 . 1 5  - 1 .37  0 . 2 3  - 1 . 4 4  0 . 3 9  - 5 .56  2 0 . 5 7  35 .45  - 7 7 . 1 9  

2.5 O u t e r  l o a d i n g  l i n e  

3.2. Phase angles 

The non-dimensional phase angles 9 "  can be 
calculated using the finite element procedure de- 
scribed above. The results have the non-dimen- 
sional form, 

I m ( g h  i '  ) 
' / '* = arctan 

Re( Kh i" ) 

= arctan (?3 q- c4(I-th/2l) 
cl + c2(l~h/2l) (8) 

where the coefficients ct, c 3 are due to P and c 2, 
(?4 due to F. The values obtained for these coeffi- 
cients with respect to crack length a l l  and mod- 
ulus ratio E 2 / E  1 (for Poisson's ration v I = v 2 = 0.3 
and h 1 = h2) are summarized in Table 1-4. As 
expected, friction has no effect on the phase angle 
for cracks in the constant moment region. On the 
contrary, as the crack enters the transient zone 
between the inner and outer loading lines, the 
phase angle becomes sensitive to crack length and 
increases substantially with increase in friction 

T a b l e  4 

T h e  c o e f f i c i e n t s  ci ,  i = 1, 4,  k i, i = 1, 

r a t i o s  v 1 = v 2 = 0 .3  

a / I  c 1 c 2 c 3 c 4 

0 .31  0 . 4 0  - 0 . 7 9  0 . 4 2  - 0 . 8 4  

0 . 6 3  0 . 3 9  - 0 . 7 8  0 . 4 1  - 0 .83  

0 . 9 4  0 . 3 8  - 0 . 7 6  0 .41  - 0 . 8 2  

1 .25  0 . 3 4  - 0 . 7 0  0 . 3 8  - 0 . 7 8  

1 .41 0 . 3 0  - 0 . 6 6  0 .35  - 0 . 7 4  

1.5 I n n e r  l o a d i n g  l i n e  

1 .56  0 . 2 3  - 0 .65  0 . 2 9  - 0 .71  

1 .72  0 . 1 7  - 0 . 7 0  0 . 2 2  - 0 . 7 3  

1 .88  0 .11  - 0 . 7 7  0 . 1 6  - 0 . 7 9  

2 .03  0 . 0 6  - 0 . 9 3  0 . 0 9  - 0 .91  

2 .5  O u t e r  l o a d i n g  l i n e  

3 a n d  u i ,  i = 1, 2 as  a f u n c t i o n  o f  t h e  c r a c k  l e n g t h  f o r  m o d u l u s  r a t i o  E 2 / E  l = 25 a n d  P o i s s o n ' s  

k l  k 2  k3  Ul u2 

3 .98  - 1 5 . 9 4  1 5 . 9 4  1 9 . 5 6  - 3 7 . 2 2  

3 .93  - 1 5 . 7 4  1 5 . 7 6  2 2 . 8 7  - 4 3 . 8 5  

3 .75  - 1 5 . 0 9  1 5 . 1 6  2 6 . 5 6  - 5 1 . 2 5  

3 .17  - 1 2 . 9 9  1 3 . 3 0  30 .43  - 59 .11  

2 . 5 2  - 1 0 . 8 9  1 1 . 8 0  3 2 . 2 3  - 6 2 . 9 5  

1 .65 - 8 . 6 2  1 1 . 3 0  3 3 . 6 9  - 6 6 . 8 1  

0 . 9 5  - 6 . 8 0  1 2 . 3 7  3 4 . 7 9  - 7 1 . 0 9  

0 . 4 7  - 5 . 2 0  1 4 . 7 7  3 5 . 5 4  - 7 6 . 0 0  

0 . 1 6  - 3 .55  2 0 . 4 6  36 .01  - 82 .01  
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Fig. 5. The trends in normalized steady-state energy release rate f#,., with the height to spacing ratio h / l  for various friction 
coefficient /~ and elastic modulus ratios E 2/E.  

coefficient. Such effects for various modulus ratios 
and friction coefficients in the interval 0 ~</~ ~< 0.5 
are shown in Fig. 8. 

3.3 Beam compliances 

Numerical estimates of the mid-point deflec- 
tion of the composite beam were also obtained 
using the finite element analysis. Calculated trends 
in the normalized mid-point deflections u e and U F 

caused by the applied and frictional loads, respec- 
tively, have the form, 

UlPld 2 

E2bh 3 
bl P 

and 

U F 
u2Fhd 2 

E2bh 3 

with  u , ( i  = 1, 2) b e i n g  the  coe f f i c i ents  s u m m a r i z e d  
in  Tab le s  1 - 4  and  2 d  is the  spac ing  b e t w e e n  the 
outer  l o a d i n g  l ines .  T h e n ,  l inear  superpos i t i on  dic-  
tates that the  total  
dur ing  loading be 

/ ' /L ~ b/P -4- U F 

= [u 1 + u21~h/21 ] -  

m i d - p o i n t  b e a m  def l ec t ion  

Pld 2 
(9a) 

E 2 bh 3 

whereas ,  on  unload ing  because  of  the reversal  of  
friction 

U u ~ U P - -  U F 

Pld 2 
= [ u  I - u21~h/21 ] - -  (9b) 

E2bh 3 

T h e  trends in c o m p l i a n c e ,  u e with  crack length,  
for h / l  = 0.5,  and  coe f f i c i ent s  of  fr ict ion in the 
interval  0 ~< # ~< 0.5 are s h o w n  in Fig. 9. The  in-  
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a. App l ied Loads 

h 1 = h:: 

b.  F r i - * ' - -  ' - - ~ -  

h 1 = h: 

b y m m e l r y  ,v,~ ! =~ I~L  L F/  b 
P lane 

c. Thermal  Loads 

h 1 = 0.5 h 2 

oR 

Deform 

Fig. 6. Deformed finite element meshes. 

fluence of friction is evidently substantial. These 
compliances can, in fact, be used to extract the 
operative friction coefficients for any test system 
by noting that, 

# = 2(ua/u2)(l/h)(UL - u , ) / ( u  L + Uu) (10) 

Consequently, by knowing the crack length to 
obtain u 1 and u 2 and by measuring the loading 
and unloading compliances without crack growth, 
/~ can be deduced, as elaborated above. 

4. Analysis of residual stress effects 

4.1 Energy release rates 

Using standard procedures (Fig. 10), the ther- 
mal loading can be replaced by an axial force 
N R 2 and a bending moment M R. For this case, 
steady-state conditions obtain throughout, pro- 
vided that a/h s >/4, where h s = min(h], h2). In 

the presence of both the applied moment M p and 
the thermal loads N R and M R, the net steady-state 
energy release rate is obtained as the difference of 
the strain energies in sectors i and ii shown in Fig. 
4. The result can be expressed in the form 

~s~ = ~¢R + ~Rp + ~ p  (11) 

where f i r  and ~ e  are the decoupled energy 
release rates generated by the thermal and applied 
loads respectively and ~RP represents their inter- 
action. The individual terms are given by; 

A, Ic j 

f ~ P = ( l - v 2 ) ( M P ) 2 [  1 2  E 1 ~. 12 Icl] 

 eR1, = (1 - ) M R M  " 

Ellc 

where A 1 and A c are the cross-sectional areas per 
unit width of the top layer and the composite 
beam, respectively. The loads and moments can be 
expressed in terms of stresses such that, 

N R = hi  oR 

MR h~ [ MI(1 + ~/) ] 
= T L  Txn 

J 

M P h 2 p 
= - ( o  

O R 

(12) 

where for plane strain, the mismatch stress is 

oR = El(a 2 -  al)  AT 
( 1  - 

with a i (i = 1, 2) being the thermal expansion 
coefficient for the layer i, AT= Tfina I - T i n i t i a  1 
being the temperature difference, ~/= h2/h], and 
o e is the maximum tensile bending stress due to 
M e applied at the bottom layer alone. 

Consequently, the energy release rate compo- 
nents can be presented in non-dimensional form 
as 

~ R E 2 b 2 h 3  

2 The superscript ()R refers to the thermal load. p2/2( 1 - v2Z) 
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Fig. 7. The trends in normalized energy release rate f with crack length for various friction coefficients and elastic modulus ratios. 

These results were obtained for h/ l  = 0.5 and Poisson's ratios vl = vz = 0.3. 

= -~X2 1 + M1 

1 -+- ~k'0 3 q- 3}k~ (1 + ~/)2 ~ 1---~-~ / 
1 +AT 

x(oR/o, ' )  ~ 

f~RPE2b2h3 

p212(1 - v~) 

9X z ( 1  + . ) 4  (oR/oP) 
= (~ +~)2 ~1(1 + Xrl) 

1 + Xrl 3 + 3Xv/ + ~71 

~PE2b2h 3 

p 2 1 2 ( 1 - v ~ )  

_ 3{  1 X }(1 +,7) ~ 
2 ~/3 (1 + 7/) 2 

1 + M 1 3 + 3 ~  1 + ~  

(13) 

such that, 

~ssEzbZh 3 
= gl + g2 "r + g3 r2 ( 1 4 )  

p 2 1 2 ( 1 - v  2 ) 

w h e r e  r is  t h e  r a t i o  b e t w e e n  t h e  t h e r m a l  a n d  

a p p l i e d  s t r e s s e s ,  o R / o  *'. T h e  t r e n d s  in  g l  w i t h  

h J h  2 a n d  E 2 / E  1 c a n  b e  f o u n d  in  a p r e v i o u s  



P.G. Charalambides et al. / Fracture of bimaterial interfaces 277 

8 0  I I I i I i i I 
" ~  p. =0.5  

P l a n e  S t ra in  ~ P = 0 .5  0 .4  0 3 ly /,  :o.5 " o.2 70 ~=0.5 ~: ~ *  / /Khi£ 
~ = to.o 

E2 1.o L /  . . . .o  . o o., 
60 ~;=1-v~ E--~ = 

03 
II 

b- 50 

) 
< 40 r 

Loading : Loading 
~L ,'~ 1 I I Line I I I I Line I 

_°~0 0.5 1.0 1.5 2.0 2.5 ( 0.5 1.0 1.5 2.0 2.5 8u i i i I i I i i 

P 0 .4  

h o.s _h 0.5 0.3 
• 70 7 = ~ ' 0.2 E3 

E = 2.5 0.4 T = 25.0 

0 .3  0.1 
-~ ~ 60 0.2 ~ o.o 
0") 0.1 

0.0 

~. 50 

r 

< 40 I 
¢~ ~'| Inner ~ Inner 

Loading Loading 
g_ I I I L i n e  I } " L i n e  

300 " 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5 

Normalized Crack Length a / f  Outer t Normalized Crack Length a / f  Outer I ' 
Loading / Loading / 

Line Line 
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article (Charalambides et al., 1989). The corre- 
sponding trends in g3 due to thermal loads alone 
are shown in Fig. 11 and Tables 5-8. For large 
h2/h I (>i 60), the results correspond to those for 
thin films and are in agreement with solutions 

reported elsewhere (Drory et al., 1989; Suo and 
Hutchinson, 1989). Results for combined loads 
(Fig. 12) in the range where combined effects are 
prevalent, - 2 o R / o  P <  2, emphasize an important 
asymmetry. Specifically, for a system with AT < 0 

Table 5 

The coefficients Cr, i = 5, 8 and gi, i = 1, 3 for the modulus ratio E 2 / E  1 = 1.0 and Poisson's ratios I, 1 = J'2 = 0.3 

hi~h2  c5 c6 c7 c8 gl g2 g3 

0.10 0.46 0.41 0.51 0.47 0.50 0.90 0.41 

0.20 0.72 0.50 0.75 0.71 1.09 1.80 0.76 

0.30 0.95 0.54 0.94 0.88 1.80 2.70 1.07 
0.40 1.16 0.54 1.12 1.04 2.62 3.60 1.37 

0.50 1.38 0.51 1.28 1.19 3.56 4.50 1.69 
0.60 1.59 0.45 1.45 1.36 4.64 5.40 2.05 
0.70 1.80 0.36 1.61 1.53 5.87 6.30 2.49 
0.80 2.02 0.26 1.77 1.72 7.23 7.20 3.02 
0.90 2.24 0.14 1.94 1.91 8.79 8.10 3.66 

1.00 2.45 0.00 2.12 2.12 10.50 9.00 4.50 
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and a 2 > a 1 (the negative axis in Fig. 12), ~ ini- 
tially decreases as load is applied, because the 
residual compression in the film induces a di- 
minished net strain as cre increases. Consequently,  

crack extension is initially inhibited. Conversely, 
when al > a2, f# systematically increases as the 
load is applied. 

Table  6 
The  coefficients q ,  i = 5, 8 and  gi, i = 1, 3 for modu lus  ra t io  E 2 / E  1 = 2.5 and Poisson 's  ra t ios  ~'1 = u2 = 0.3 

h 1 /h  2 c5 e6 c7 c8 gl g2 g3 

0.10 0.21 0.47 0.30 0.71 0.25 1.11 1.26 

0.20 0.37 0.64 0.47 1.08 0.63 2.62 2.73 
0.30 0.53 0.77 0.63 1.38 1.17 4.43 4.31 
0.40 0.69 0.85 0.78 1.65 1.87 6.49 5.94 

0.50 0.85 0.89 0.92 1.91 2.73 8.73 7.64 
0.60 1.02 0.88 1.06 2.16 3.76 11.09 9.41 

0.70 1.18 0.83 1.21 2.42 4.94 13.55 11.33 
0.80 1.35 0.75 1.35 2.69 6.29 16.09 13.45 
0.90 1.52 0.63 1.49 2.96 7.81 18.67 15.86 
1.00 1.68 0.49 1.65 3.25 9.51 21.30 18.64 
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Fig. 10. A schematic of the loading conditions. 

4. 2 Stress intensities and phase angles 

The stress intensities and the associated phase 
angle generated by the thermal residual stresses 
are calculated using finite elements. This thermal 
boundary value problem can be solved using 
Eshelby's procedure (cutting-straining-welding- 
relaxing), depicted together with the mesh used to 
obtain the finite element solutions on Fig. 6. The 
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Fig. 11. Trends in normalized steady-state residual energy 

release rate fOR with relative thickness ratio h I /h  z, for vari- 

ous modulus ratios E 2 / E  1 with Poisson's ratios v 1 = v 2 = 0.3. 

resulting stress intensity factor and phase angle 
are given by 

( g h i ' )  R = ( c  6 -t- ic8)h~/2  OR PI  
a P bh3/2 

¢8 ( q , ,  ) R = a r c t a n  - -  (15a) 
C6 

where c i (i = 5-8) are given in Table 5-8. For the 
homogeneous case (X = 1), the phase angle varies 
between the limiting thin film value of 52 ° to a 
value of 90 o for a beam with equal layer thick- 
nesses. However, (q '*)R becomes less sensitive to 

Table 7 

The coefficients ci, i = 5, 8 and gi, i =1,  3 for modulus ratio E 2 / E  1 =10.0 and Poisson's ratios v I = v 2 = 0.3 

h ~/h 2 c5 e6 c7 c8 gl g2 g3 

0.10 0.05 0.45 0.10 0.97 0.07 1.26 5.72 
0.20 0.10 0.69 0.17 1.50 0.20 3.37 14.06 

0.30 0.16 0.94 0.23 1.98 0.43 6.51 25.10 

0.40 0.23 1.18 0.31 2.46 0.78 10.79 38.78 

0.50 0.31 1.39 0.38 2.94 1.27 16.27 54.89 
0.60 0.39 1.56 0.46 3.41 1.93 22.93 73.19 

0.70 0.48 1.70 0.55 3.88 2.77 30.71 93.42 
0.80 0.57 1.79 0.63 4.35 3.81 39.51 115.38 
0.90 0.67 1.84 0.72 4.83 5.06 49.23 139.00 
1.00 0.76 1.85 0.81 5.30 6.52 59.75 164.32 
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Table 8 
The coefficients c,, i = 5, 8 and 
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g,, i =1,  3 for modulus ratio E2/E~  = 25.0 and Poisson's ratios ~,~ = v 2 = 0 , 3  

h ~ /h  2 Cs c6 c7 Cs gl g2 8;3 

0.10 0.0 0.43 0.04 1.04 0.03 1.29 14.70 
0.20 0.04 0.69 0.07 1.62 0.09 3.58 37.29 
0.30 0.07 0.98 0.10 2.18 0.19 7.18 69.19 
0.40 0.10 1.28 0.14 2.75 0.36 12.43 111.26 
0.50 0.14 1.58 0.18 3.33 0.61 19.64 164.46 
0.60 0.18 1.86 0.22 3.93 0.98 29.08 229.13 
0.70 0.23 2.13 0.26 4.55 1.47 40.95 305.25 
0.80 0.28 2.38 0.31 5.17 2.13 55.41 392.64 
0.90 0.33 2.61 0.36 5.81 2.97 72.50 490.85 
1.00 0.38 2.80 0.41 6.45 4.01 92.21 599.39 

the thickness ratio as the modulus ratio EE/E  ~ 

increases. 
The coupled effects of thermal and applied 

loadings on the phase angle have the general form, 

C 7 4-  C8¢ 
' / ' *  = arctan - -  (15b) 
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Trends in ~/'* are plotted in Fig. 13. Generally, 
'/'* is insensitive to geometry and loading, except 
when o e is small. For small o*' and for cases 
wherein the residual stress is compressive, the 
phase angle changes sign as the beam is initially 
loaded, resulting in dramatic changes in xo*. Con- 
sequently, when residual compressive stresses are 
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present, crack extension may be subject to wide 
variations in phase angle. 

5. Frac ture  r e s i s t a n c e  m e a s u r e m e n t s  

5.1 Procedure 

The test materials used to validate the preced- 
ing analysis all involve bimaterials bonded with a 
thin ( -  25 ~tm) amorphous layer: either an organic 
polymer or an inorganic glass (Table 9). The de- 
tails concerning specimen preparation are de- 
scribed elsewhere (Cao, 1988; Cao and Evans, 
1989; Lund, 1988; Reimanis et al., 1989). The 
materials and bonding conditions have been 
selected in all but one case to avoid residual strain 
effects 3, as needed to systematically address the 
role of friction. Residual stresses are present in the 
A1/glass system (Table 9). The results obtained on 
this system allow investigation of the additional 
effects of mismatch stress, o a. 

The incorporation of an interfacial precrack is 
achieved by loading the notched section in three- 
point flexure such that the crack, once initiated, 
propagates subject to diminishing ~ and thus 
arrests. In some cases, substantial overloads are 
needed to initiate the crack from the notch. In 
such instances, the arrest process is facilitated by 
subjecting the specimen to a compressive prestress 
at a predetermined crack arrest site (Lund, 1988), 
Specimens, one precracked, are subjected to four- 

Table 9 
Bimaterial systems tested 

Materials Bond layer • ~tip '~c 
(deg) (deg) (Jm 2 ) 

PMMA/AI  Epoxy 68 78 6 
Glass/Steel Epoxy 53 64 26 
Glass/Glass Thermoplastic 42 52 7 
A1203/A1203 Glass 42 36 10 
Al /Glass  Thermoplastic 42 53 2 

Note: To obtain the phase angle, ~ ,  the units used for all 
dimensions were micro-meters (/tm). 

3 The residual stress existing in the thin bond layer does not 
contribute to the mixed mode fracture resistance. 

point flexure and the center line displacements 
monitored. Initially, the loading and unloading 
compliances are measured (Fig. 2), as needed to 
assess the magnitude of the lateral tractions at the 
loading points, caused by friction. When the fric- 
tion is excessive, test fixture modifications are 
made in order to reduce/~ to a level that provides 
consistent values of the interface fracture resis- 
tance. Such modifications include changes in the 
test span, reduction of the surface roughness of 
the loading rods and of the specimen, incorpora- 
tion of a solid lubricant between the specimen and 
the loading rods, etc. Following these modifica- 
tions, the compliance hysteresis is remeasured and 
then the load slowly increased to the critical value 
for crack extension, as ascertained from the onset 
of a compliance increase. 

In the A1/glass system, the presence of residual 
stress was determined from the residual bending 
(Cao, 1988; Cao and Evans, 1989), giving a misfit 
stress of 10 MPa. This stress arose because bond- 
ing with the thermoplastic was conducted at 
- 100 °C and because the A1 and glass have dif- 
ferent thermal expansion coefficients. 

5.2 The critical energy release rate 

The first step in the analysis of the data involves 
determination of the friction coefficient from the 
compliance hysteresis, as illustrated in Figs. 2 and 
7. Having this quantity, since residual stress ef- 
fects are absent in most instances, the energy 
release rate can be determined from the critical 
loads and the specimen dimensions, using eqn. (6). 

The general applicability of the method for 
evaluating the friction coefficient and then obtain- 
ing ~c was rigorously assessed using data ob- 
tained on an A1/PMMA system (Fig. 14). For this 
bimaterial system ( E 2 / E  l =. 25), the critical prop- 
agation load increased with increase in crack length 
(Fig. 14), because ~ systematically diminishes as 
the crack extends (see Fig. 6), and because loading 
generates a range of frictional tractions (Table 10). 
Applying eqn. (6) and using the measuring friction 
coefficients (Table 10), the corrected crack propa- 
gation load that governs the energy release rate 
(Fig. 14) exhibits the constancy expected when a 
critical energy release rate governs fracture such 
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that ffc = 6 Jm-2. This value obtains at a nominal 
phase angle # = 68 °. Furthermore, results ob- 
tained for each of the material systems listed in 
Table 9 gave specimen independent values of ffc 
for the interface, provided that the phase angle q' 
was maintained at the same level. However, it is 
recognized that changes in • usually cause ffc to 
vary (Cao 1988; Cao and Evans, 1989; Evans and 
Hutchinson, 1989). 

The results obtained for the phase angle are 
dimension sensitive, as discussed by Rice (1988). 
The choice of length unit used to present the data 
is not important, provided that the choice is con- 
sistent. However, it is noted that the choice can 
greatly affect the range  of phase angle applicable 
to a particular bimaterial interface., For ease of 
correlation with results obtained for homogeneous 

systems, for which "~/2 < '/" < ~ /2 ,  length units 
that allow q" to be primarily within this angular 
range have been selected. Micrometers appear to 
be an appropriate choice for systems of present 
interest and this unit has been used in Table 9. It 
is also noted that, for the present test specimen 
having a thin interlayer, the phase angle is mod- 
ified by the presence of that layer in accordance 
with (Suo and Hutchinson, 1989) 

X/.tti p = ~ t  + O~ - -  ~ in H (16) 

where g'tip refers to the modified value, H is the 
layer thickness, ~ (eqn. 2) refers to the materials 
on either side of the crack and ~0 is an angle (Suo 
and Hutchinson, 1989) also determined by the 
materials adjoining the fracture interface. Values 
of '/'tip are presented in Table 9 and should be 
used as the appropriate phase angle for presenting 
the trends in fie- 

The effect of residual stress on the interpreta- 
tion of crack propagation measurements is il- 
lustrated for the A1/glass system. Calculation of 
ffc by neglecting the residual stress, using (6), 
indicates erroneously that the fracture resistance 
of the interface is 7 J m  - 2  for '/'tip = 53°- The sign 
of the mismatch stress o R in this case is negative: 
the notch being in the glass layer. Consequently, 
the residual stress initially diminishes if, com- 
pared with the value deduced solely from the 
applied loads, as evident from Fig. 12. The cor- 
rected interface toughness obtained using (14) with 
o R = 10 MPa is ff~ = 2 Jm-2. It is evident that the 
residual stress, although small, still has an im- 
portant influence on the value of ,tic inferred from 
the measured crack propagation loads. 

Table 10 
Friction results for A 1 / P M M A  

Crack length Load (N) Friction coefficient 
( a / l )  

0.7 210 0.09 
0.8 260 0.12 
0.95 265 0.15 
1.0 280 0.17 
1.1 290 0.20 
1.2 300 0.22 

6. Concluding remarks 

The mixed mode strain energy release rate for 
bimaterial flexural specimens has been shown to 
be influenced both by friction at the loading points 
and by residual stress. Analyses of these effects in 
conjunction with experimental measurements have 
allowed determinations of the critical energy re- 
lease rate, f¢¢, for a variety of bimaterial systems. 
It has also been demonstrated that neglect of 
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friction and of residual stress would result in 
erroneous, non-unique values of fqc. 

Most other test specimens used for determining 
~c are also subject to the influence of loading 
point friction and residual stresses. It is thus ap- 
parent that specimens which probe other regions 
of fgc (~Ittip) space will require a similar analysis, 
coupled with experimental validation. 
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