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As one of major failure modes of mechanical structures subjected to periodic loads,
embedded cracks due to fatigue can cause catastrophic failure of machineries. Under-
standing the dynamic characteristics of a structure with an embedded crack is helpful for
early crack detection and diagnosis. In this work, a new three-segment beam model with

with a closed, fully embedded horizontal crack, which is assumed to be not located at its
clamped or free end or distributed near its top or bottom side. The three-segment beam
model is assumed to be a linear elastic system, and it does not account for the nonlinear
crack closure effect; the top and bottom segments always stay in contact at their interface
during the beam vibration. It can model the effects of local deformations in the vicinity of
the crack tips, which cannot be captured by previous methods in the literature. The
middle segment of the beam containing the crack is modeled by a mechanically con-
sistent, reduced bending moment. Each beam segment is assumed to be an Euler–Ber-
noulli beam, and the compliances at the crack tips are analytically determined using a J-
integral approach and verified using commercial finite element software. Using compat-
ibility conditions at the crack tips and the transfer matrix method, the nature frequencies
and mode shapes of the cracked cantilever beam are obtained. The three-segment beam
model is used to investigate the effects of local flexibilities at crack tips on the first three
natural frequencies and mode shapes of the cracked cantilever beam. A stationary wavelet
transform (SWT) method is used to process the mode shapes of the cracked cantilever
beam; jumps in single-level SWT decomposition detail coefficients can be used to identify
the length and location of an embedded horizontal crack.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Embedded cracks are one of major failure modes of mechanical structures subjected to periodic loads. The dynamic
characteristics and the safety of machineries are greatly affected by cracks due to fatigue. To prevent catastrophic failure of
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machineries, mechanical structure monitoring for early crack detection and diagnosis is an important task for industrial
maintenance.

When a crack occurs in a structure, its static and dynamic characteristics such as the stiffness, natural frequencies, mode
shapes, damping, and vibration amplitudes will be changed [1,2]. An investigation of changes in the static and dynamic
characteristics makes it possible to detect a crack in a structure [1–4]. While mode shapes and damping are more sensitive
to the existence of a crack in a structure than natural frequencies in practice, magnitudes of changes in the natural fre-
quencies are also functions of the severity and location of the cack in the structure [2,5–10]. Many research works determine
damage severity of beam structures using analytical, numerical, and experimental methods. For an open crack, damage
detection depends on changes in the static and dynamic characteristics. For a breathing crack, it depends on nonlinear
dynamic characteristics, such as periodical structural stiffness variation, modulation frequencies, and higher harmonics,
which was discussed in Ref. [11].

As one of accurate and comprehensive methods, a modeling and simulation method can predict the dynamic char-
acteristics of a cracked structure and provide some guidance to early detection of crack failure. Many previous works
focused on an edge crack [9,12–24] and multiple edge cracks [3,10,25–30] in cantilever or simply supported beams. Some
researchers have studied delaminations in beam structures [16,31–46]. While some studies [33,34,41,43,46] are focused on
detection of delamination in a laminated material, some [4,16,31,32,35–38,40,42,44,45] are focused on modeling delami-
nations in beam structures based on analytical methods, the finite element (FE) method, and experimental methods. The
compatibility conditions at the junctions are formulated as changes in the axial forces and bending moments there
[16,31,32,35–37,39,40,42,44], which cannot describe local flexibilities at crack tips due to the presence of a crack. Wang and
Qiao [38] used a shear compliance coefficient at a crack tip to describe the crack tip deformation for a simply-supported
end-notched beam specimen. Qiao and Chen [45] used the model in Ref. [38] to study deformations at delamination tips in a
clamped and a simply supported bi-layer composite beam with an interface delamination. Cantilever beam structures with
embedded cracks have not been discussed in the literature.

In this work, a new three-segment beam model with local flexibilities at crack tips is developed to investigate the
vibration of a cantilever beam with a closed, fully embedded horizontal crack, which is assumed to be not located near its
clamped or free end or distributed near its top or bottom side. For the closed, fully embedded horizontal crack, the top and
bottom segments always stay in contact at their interface and have the same transverse displacements; they can slide over
each other in the axial direction except at their ends. Such a crack can occur in a layered structure prone to delamination.
While the beam is assumed to be homogeneous here, the methodology developed in this work can be extended to laminates
with homogeneous layers, whose material properties are not functions of spatial variables. Hence, the three-segment beam
model is assumed to be a linear elastic system and does not account for the nonlinear crack closure effect. The proposed
model can describe the effects of local deformations in the vicinity of the crack tips, which cannot be captured by previous
analytical methods in the literature. The middle segment of the beam containing the crack has a mechanically consistent,
reduced bending moment. This work builds on parallel studies in Ref. [47] where the macro-mechanics of a cantilever beam
with an embedded horizontal crack under a static load is addressed. Each beam segment is assumed to be an Euler–
Bernoulli beam in this work, which implies that it is slender. However, the methodology developed here can be extended to
the case where each beam segment is modeled as a Timoshenko beam. Compliances at the crack tips are analytically
determined using a J-integral approach [48]. The J-integral approach may not be used to analyze a breathing, embedded
crack with opening and closing states, or a crack located near the clamped or free end of the beam, or distributed near its top
or bottom side. Using compatibility conditions at the crack tips and the transfer matrix method [18,27,49], the natural
frequencies and mode shapes of the cracked cantilever beam are obtained. Since the FE method has been widely used in
deformation and vibration studies of beams with cracks [1,22,42,50–56], the J-integral and stress state results from the
analytical method are verified using commercial FE software [57]. A more detailed comparison of the J-integral results using
the analytical and FE methods is presented in Ref. [47].

The new three-segment beam model is used to investigate the effects of local flexibilities at crack tips on the first three
natural frequencies and mode shapes of the cracked cantilever beam. The results show that the model put forward here is an
improvement over the related one, where crack-induced rotational flexibilities of cross-sections of the beam at the crack tips
are not considered. As will be demonstrated later in this study, inclusion of local flexibilities at the crack tips can model
Fig. 1. Schematic of a cantilever beam with a closed, fully embedded horizontal crack.



Fig. 2. Two parts of the cracked beam and paths used in determining the J-integrals along the contours of the (a) left (FEDCBA) and (b) right (ABCDEF) parts
of the beam.
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kinks in mode shapes there. A stationary wavelet transform (SWT) method [58,59] is used to process mode shapes of the
cracked cantilever beam; it is shown that jumps in single-level SWT decomposition detail coefficients can be used to
identify the location and size of an embedded horizontal crack. This study is a first step towards modeling and detecting a
slant crack in a beam structure.
2. Crack-induced local flexibilities at crack tips

A uniform Euler–Bernoulli cantilever beam of length L, height h, and width b with a closed, fully embedded horizontal
crack is shown in Fig. 1, where P is an applied force, X0 and X3 are the fixed and free ends of the beam, respectively, and X1

and X2 represent the end points of the crack relative to the global X–Y coordinates. The crack length is L2 and the crack depth
from the top surface of the beam is h1 with 0oh1oh. It is assumed that the center of the crack is located at Xc with L2/
2oXcoL�L2/2. The beam is divided into three segments of lengths L1, L2, and L3, which are separated by the end points of
the crack.

The equivalent crack-induced rotational flexibilities of cross-sections of the beam at the two crack tips are analytically
determined here using a J-integral approach. The beam is divided into two parts at the center of the crack, as shown in Fig. 2,
where P1 and P2 are the shear forces on the edges EF and AB, respectively,M1 andM2 are the bending moments at EF and AB,
respectively, and N1 and N2 are the axial forces acting at the centroids of the top and bottom cross-sections of the beam at
the center of the crack, respectively. The J-integrals along the contours of the left (FEDCBA) and right (ABCDEF) parts of the
beam are determined in what follows. The local coordinates for the left and right parts of the beam are shown in Fig. 2.

According to Rice’s method [48], a J-integral is given by

J ¼
Z
Γ

W dY�Ti
∂ui
∂xds

� �
(1)

where the Einstein summation convention is used;W is the strain energy density; Γ is a curve surrounding a crack tip; Ti¼σijnj are
components of the traction vector, inwhich σij, with i, j¼1, 2 for a planar problem, are stress components, and nj are components of
the outward normal along Γ; ui are components of the displacement vector; dY is a length element along the Yr or Yl axis in the
local coordinates, as shown in Fig. 2; and ds is an arc length element along Γ. For the right part of the beam in Fig. 2(b), the J-
integral along the contour ABCDEF is the sum of line integrals along segments AB, BC, CD, DE, and EF of the contour:

Jr ¼ JrABþ JrBCþ JrCDþ JrDEþ JrEF (2)

where the superscript r denotes the right part. For segments BC and DE, dY¼0 and Ti¼0; hence

JrBC ¼ 0; JrDE ¼ 0 (3)

For segment AB, one has

JrAB ¼
Z
AB

Wr
AB dY�Ti

∂ui
∂xds

� �¼ Z
AB

�Wr
AB ds� T1

∂ur
1

∂X
þT2

∂ur
2

∂X

� �
ds

� �
(4)

where

Wr
AB ¼

1
2
σr
xx2ε

r
xx2þ

1
2
τrxy2γ

r
xy2 (5)

in which σr
xx2 and τrxy2 are the normal and shear stresses on segment AB, respectively, εrxx2 and γrxy2 are the normal and shear

strains of segment AB, respectively, and the subscript 2 denotes the stress and strain components associated with segment
AB. They are given by

σr
xx2 ¼

N2

Ab
�M2

Ib
Y ; ϵrxx2 ¼

∂ur
1

∂X
¼ N2

EAb
�M2

EIb
Y

τrxy2 ¼
P2S Yð Þ
Ibt1

; γrxy2 ¼
τrxy2
G

¼ ∂ur
1

∂Y
þ∂ur

2

∂X
¼ P2S Yð Þ

GIbt1
(6)

where E and G are the elastic and shear moduli of the beam, respectively, Ab is the cross-sectional area of the bottom
segment of X1X2, Ib is the cross-sectional area moment of inertia of the bottom segment of X1X2 about its centroidal axis, X
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and Y are the displacements in the X and Y directions, respectively, S(Y)¼YdA, in which dA is an element area, and ur
1 and ur

2
are the deflections of the bottom segment of X1X2 in the X and Y directions, respectively. The relationship between the
deflections in the X and Y directions is [60]

ur
1 ¼ u0r

1 �∂u0r
2

∂X
Y (7)

where the superscript 0 denotes deflections along the centroidal axis of the bottom segment of X1X2. Differentiating Eq. (7)
with respect to Y yields

∂ur
1

∂Y
¼ �∂2u0r

2

∂X∂Y
Y�∂u0r

2

∂X
¼ �∂u0r

2

∂X
¼ �∂ur

2

∂X
(8)

where ∂2u0r
2

∂X∂Y ¼ 0 since the slope of the deflection along the centroidal axis of the bottom segment of X1X2 does not depend on
Y. As discussed in Ref. [47], for the cracked cantilever beam, the deflection angle of the cross-section AB can be assumed to
be the sum of the deflection angle of the cross-section at X1 relative to that at X0 and the deflection angle of the cross-
section at Xc relative to that at X1:

∂ur
2

∂X
¼ �PL21

2EI
�P L�L1ð ÞL1

EI
�P2a2

2EIb
þM2a

EIb
(9)

where a¼0.5L2 (Fig. 1). Then

γrxy2 ¼
∂ur

2
∂X

¼ �PL21
2EI

�P L�L1ð ÞL1
EI

�P2a2

2EIb
þM2a

EIb
(10)

The traction vector components for segment AB are given by

T1 ¼ σ11n1þσ12n2 ¼ �σ11; T2 ¼ σ21n1þσ22n2 ¼ �σ21 (11)

Use of Eqs. (5)-(10) in Eq. (4) yields

JrAB ¼
Z
BA

1
2
σrxx2ϵ

r
xx2dYþ

Z
BA

τxy2
∂ur

2

∂X
dY

¼ N2
2

2EAb
þ M2

2

2EIb
þPP2L

2
1

2EI
þPP2 L�L1ð ÞL1

EI
þP2

2a
2

2EIb
þP2M2a

EIb
(12)

Similarly, the line integral along segment EF is

JrEF ¼
N2

1

2EAt
þ M2

1

2EIt
þPP1L

2
1

2EI
þPP1 L� L1ð ÞL1

EI
þP2

1a
2

2EIt
þP1M1a

EIt
(13)

where At is the cross-section area of the top segment of X1X2, and It is the cross-sectional area moment of inertia of the top
segment of X1X2 about its centroidal axis. For segment CD

JrCD ¼
Z
CD
Wr

CDdY�Ti
∂ui
∂X ds¼

Z
CD

Wr
CD� T1

∂ur1
∂X þT2

∂ur
2

∂X

� �� �
ds (14)

where

Wr
CD ¼ 1

2
σr
xx4ε

r
xx4þ

1
2
τrxy4ε

r
xy4þτryx4ε

r
yx4

� �
¼ 1
2
σr
xx4ε

r
xx4þ

1
2
τrxy4γ

r
xy4 (15)

in which the subscript 4 denotes the stress and strain components associated with segment CD. The normal stress, normal
strain, shear stress, and shear strain for segment CD are given by

σr
xx4 yð Þ ¼ 0; εrxx4 yð Þ ¼ σr

xx4
E

¼ ∂ur
1

∂X
¼ 0

τrxy4 ¼
PS Yð Þ
It1

; γrxy4 ¼
τrxy4
G

¼ ∂ur
1

∂Y
þ∂ur

2
∂X

¼ PS Yð Þ
GIt1

(16)

The rotational angle of the cross-section CD is assumed to be the sum of the rotational angle of the cross-section at X1

relative to that at X0, the rotational angle of the cross-section at X2 relative to that at X1 for either the top or bottom segment
of X1X2 since the top and bottom segments have the same rotational angles at X1 and X2, and the rotational angle of the
cross-section at X3 relative to that at X2:

∂ur2
∂X ¼ �PL21

2EI
�P L�L1ð ÞL1

EI
þ2a M1þP1bð Þ

EIt
�P1 2að Þ2

2EIt
�PL23
2EI

¼ �PL21
2EI

�P L�L1ð ÞL1
EI

þ2M1a
EIt

�PL23
2EI

(17)

The traction vector components Ti for segment CD are given by

T1 ¼ σ11n1þσ12n2 ¼ σ11; T2 ¼ σ21n1þσ22n2 ¼ σ21 (18)
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Use of Eqs. (15)-(18) in Eq. (14) yields

JrCD ¼
Z
CD

Wr
CD� T1

∂ur
1

∂X þT2
∂ur2
∂X

� �� �
ds¼ �

Z
CD
τrxy4

∂ur
2

∂X ds¼ ∂ur2
∂X P (19)

By a static FE analysis [31,47] and experimental validation [31], one can find that the curvature of the static deflection of a
cantilever beam at the center of a horizontal crack is the same as that of the corresponding beam without the crack:

∂2Yt

∂X2 ¼ ∂2Yb

∂X2 ¼ ∂2Yh

∂X2 (20)

where Yt and Yb are the displacements of the top and bottom segments of X1X2, respectively, and Yh is the displacement of
the corresponding beam without the crack. Hence

M1

EIt
¼M2

EIb
¼Mc

EI
(21)

Consequently, one has

M1 ¼
ItMc

I
; M2 ¼

IbMc

I
(22)

By moment balance of the right part of the beam at point B, one has

Mc�M1�M2þ
N2 h�h1ð Þ

2
þN1 h�h1

2

� �
¼ 0 (23)

where Mc¼�P(L�Xc) and N2 ¼ �N1. Hence

N2 ¼ �N1 ¼ �2Mc

h
1� Itþ Ib

I

� �
¼ 6h1P L�Xcð Þ h�h1ð Þ

h3
(24)

By force balance of the right part of the beam in the Y direction, one has

P1þP2 ¼ P (25)

By deflection compatibility of the beam at the cross-section at X2, i.e., the deflection along the centroidal axis of the top
segment of X1X2 in the Y direction at X2 relative to that at X1 is the same as the deflection along the centroidal axis of the
bottom segment of X1X2 in the Y direction at X2 relative to that at X1, one has

M1þP1að Þ 2að Þ2
2EIt

�P1 2að Þ3
3EIt

¼ M2þP2að Þ 2að Þ2
2EIb

�P2 2að Þ3
3EIb

(26)

By Eqs. (24)-(26), one has

P1 ¼
It

Itþ Ib
P; P2 ¼

Ib
Itþ Ib

P (27)

Substituting Eqs. (3), (12), (13), (17), (19), (21), (23), and (27) into Eq. (2) yields

Jr ¼ JrABþ JrBCþ JrCDþ JrDEþ JrEF

¼ 6 L�Xcð Þ2P2

Eh3
þ6 Xc�að Þ 2L�Xcþað Þ

Eh3
P2�6L2

Eh3
P2

þ 6a2

E h31þ h�h1ð Þ3
h iP2þ12a L�Xcð Þ

Eh3 P2

¼ h3

h31þ h�h1ð Þ3
�1

 !
6a2P2

Eh3
(28)

The change in the strain energy caused by the horizontal crack is [19]

Ur
c ¼

Z a

0
JrðaÞda (29)

By Castigliano’s theorem [22,23,61,62], the additional rotation θ caused by the horizontal crack at the cross-section at X2 can
be obtained:

θr ¼
∂
∂P

Z a

0
Jr að Þda

� 	
1
∂Ml
∂P

(30)
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whereMr ¼ �PðL�ðxCþaÞÞ is the bending moment at the cross-section at X2. By Eqs. (28) and (30), the equivalent rotational
flexibility coefficient of the cross-section at X2 is

c2 ¼
∂θr

∂P
1
∂Mr
∂P

¼ ba3

3EI L� Xcþað Þð Þ2
h3

h31þ h�h1ð Þ3
�1

 !
(31)

The rotational flexibility of the cross-section at X2 can be modeled by a compliance c2.
Proceeding in a similar manner, one can obtain the J-integral along the contour FEDCBA of the left part of the beam

(see Appendix A for more details):

Jl ¼ JlABþ JlBCþ JlCDþ JlDEþ JlEF ¼
h3

h31þ h�h1ð Þ3
�1

 !
6a2P2

Eh3
(32)

which is the same as that in Eq. (28). The additional rotation θ caused by the horizontal crack at the cross-section at X1 is

θl ¼
∂
∂P

Z b

0
Jl að Þda

" #
1
∂Ml
∂P

(33)

where Ml ¼ �PðL�ðxC�aÞÞ is the bending moment at the cross-section at X1. The equivalent rotational flexibility of the
cross-section at X1 is

c1 ¼
∂θl

∂P
1
∂Ml
∂P

¼ ba3

3EI L� Xc�að Þð Þ2
h3

h31þ h�h1ð Þ3
�1

 !
(34)

The rotational flexibility of the cross-section at X1 can be modeled by a compliance c1. It can be seen from Eqs. (31) and (34)
that c1¼c2¼0 when a¼0 or h1¼0, as expected, and c14c2. The nondimensional compliances are c�1 ¼ EIc1=Lt21 and
c�2 ¼ EIc2=Lt21.
3. Free vibration analysis of a three-segment beam model

When the crack remains closed, the top and bottom segments of X1X2 have the same transverse displacements, but they
can slide over each other in the axial direction except at their ends [16]. Hence the top and bottom segments of X1X2 can be
considered as one beam segment whose cross-sectional area moment of inertia is the sum of those of the top and bottom
segments. Under the assumption that the ratio of the length of each beam segment to its height is relatively large, the
cantilever beam with a closed, embedded horizontal crack can be modeled as a three-segment beam with local flexibilities
at X1 and X2, whose compliances are c1 and c2, respectively, as shown in Fig. 3, and each beam segment can be modeled as an
Euler–Bernoulli beam. The transverse displacement of the kth (k¼1, 2, 3) segment of the beam is denoted by Yk(X, T) with
Xk�1oXoXk.

According to Euler Bernoulli beam theory [12,16,25–28], the equations of motion of the three beam segments are given
by

EI
∂4Yk X; Tð Þ

∂X4 þρA
∂2Yk X; Tð Þ

∂T2 ¼ 0; Xk�1oXoXk; k¼ 1;3 (35)

E Itþ Ibð Þ∂
4Y2 X; Tð Þ
∂X4 þρA

∂2Y2 X; Tð Þ
∂T2 ¼ 0; X1oXoX2 (36)

where I is the cross-sectional area moment of inertia of the first and third segments of the beam, ρ is their mass density, A is
their cross-sectional area, and AtþAb¼A has been used in Eq. (36). Note that Itþ Ibo I; hence the middle beam segment has a
reduced cross-sectional area moment of inertia. Consequently, E(Itþ Ib)oEI; hence the middle beam segment has a reduced
bending moment. The boundary conditions of the beam are [26,27]

Y1 0; Tð Þ ¼ Y 0
1 0; Tð Þ ¼ 0; Y″

3 0; Tð Þ ¼ Y 000
3 L; Tð Þ ¼ 0 (37)

The continuity conditions at the cross-sections at X1 and X2 are [16]

Y1 X�
1 ; T

� �¼ Y2 Xþ
1 ; T

� �
Y2 X�

2 ; T
� �¼ Y3 Xþ

2 ; T
� �
Fig. 3. Schematic of a three-segment beam model with compliances c1 and c2 at crack tips.
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Y 0
1 X�

1 ; T
� �¼ Y 0

2 Xþ
1 ; T

� �
Y 0
1 Xþ

2 ; T
� �¼ Y 0

2 X�
2 ; T

� �
�EIY 000

1 X�
1 ; T

� �¼ �E Itþ Ibð ÞY 000
2 Xþ

1 ; T
� �

�EIY 000
3 X�

2 ; T
� �¼ �E Itþ Ibð ÞY 000

2 Xþ
2 ; T

� �
(38)

The compatibility conditions of bending moments at X1 and X2 are

�EIY″
2 X�

1 ; T
� �¼ � 1þc�1

� �
EItþEIbð ÞY″

2 Xþ
1 ; T

� �
þ EAtAbh

2

4L2 AtþAbð Þ

 !
Y 0
1 X�

1 ; T
� ��Y 0

3 Xþ
2 ; T

� �� �
�EIY ″

3 X�
2 ; T

� �¼ � 1þc�2
� �

EItþEIbð ÞY″
2 Xþ

2 ; T
� �

þ EAtAbh
2

4L2 AtþAbð Þ

 !
Y 0
1 X�

1 ; T
� ��Y 0

3 Xþ
2 ; T

� �� �
(39)

The following nondimensional quantities are introduced:

y¼ Y
L
; x¼ X

L
; xk ¼

Xk

L
; l1 ¼

L1
L
; l2 ¼

L2
L
; l3 ¼

L3
L

(40)

Let t ¼
ffiffiffiffiffiffiffiffi
ρAL4

EI

q
; Eqs. (35) and (36) become

EI
∂4yk x; tð Þ

∂x4
þρA

∂2yk x; tð Þ
∂t2

¼ 0; xk�1oxoxk; k¼ 1;3 (41)

E Itþ Ibð Þ∂
4y2 x; tð Þ
∂x4

þρA
∂2y2 x; tð Þ

∂t2
¼ 0; x1oxox2 (42)

Let yk x; tð Þ ¼wk xð Þejωt , where ω is the natural frequency, and wk(x) is the mode shape of the kth segment of the beam, Eqs.
(41) and (42) become

w″″
k xð Þ�λ4kwk xð Þ ¼ 0; xk�1oxoxk; k¼ 1; 2; 3 (43)

where

λ41 ¼
ρAω2L4

EI
; λ42 ¼

ρAω2L4

E Itþ Ibð Þ; λ43 ¼
ρAω2L4

EI
(44)

Let Λ¼ EAtAbh
2

4L2 At þAbð Þ, Il ¼ 1þc�1
� �

Itþ Ibð Þ, and Ir ¼ 1þc�2
� �

Itþ Ibð Þ; the continuity and compatibility conditions in Eqs. (38) and (39)
become
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(45)

The general solution of Eq. (43) for each segment of the beam is

wk xð Þ ¼ A0
k sin λk x�xk�1ð ÞþB0

k cos λk x�xk�1ð Þ
þC 0

k sinh λk x�xk�1ð ÞþD0
k cosh λk x�xk�1ð Þ; xk�1oxoxk; k¼ 1;2;3 (46)

where A0
k, B

0
k, C

0
k, and D0

k are unknown constants associated with the kth segment of the beam for each natural frequency. By
Eq. (45), one can relate the unknown constants associated with the (kþ1)th segment of the beam to those associated with
the kth segment:

tk11 tk12 tk13 tk14
tk21 tk22 tk23 tk24
tk31 tk32 tk33 tk34
tk41 tk42 tk43 tk44
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>>>>:
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>>>>;
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Let

T1 ¼

sin λ1l1 cos λ1l1
λ1Λ cos λ1l1�EIλ21 sin λ1l1 �λ1Λ sin λ1l1�EIλ21 cos λ1l1

�EIλ31 cos λl1 EIλ31 sin λl1
λ1 cos λ1l1 �λ1 sin λ1l1

sinh λ1l1 cosh λ1l1
λ1Λcosh λ1l1þEIλ21 sinh λ1l1 EIλ21 cosh λ1l1þλ1Λ sinh λ1l1

EIλ31 cosh λl1 EIλ31 sinh λl1
λ1 cosh λ1l1 λ1 sinh λ1l1

2
66664

3
77775

(48)

T2 ¼

0 1 0 1
λ2Λ cos λ2l2 �EIlλ

2
2�λ2Λ sin λ2l2 λ2Λ cosh λ2l2 λ2Λ sinh λ2l2þEIlλ
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λ2 0 λ2 0
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3
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T4 ¼

0 1 0 1
�λ3Λ �EIλ23 �λ3Λ EIλ23
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2
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Then
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A0
3

B0
3

C0
3

D0
3

8>>>><
>>>>:

9>>>>=
>>>>;

¼ T�1
4 T3T
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(53)

Furthermore, the boundary conditions in Eq. (37) are reduced to

w 0ð Þ ¼ 0; w0 0ð Þ ¼ 0 (54)

w″ 1ð Þ ¼ 0; w0″ 1ð Þ ¼ 0 (55)

Applying the boundary conditions in Eq. (54) to Eq. (46) yields

A0
1þC0

1 ¼ 0; B0
1þD0

1 ¼ 0 (56)

Applying the boundary conditions in Eq. (55) to Eq. (46) yields

�λ23A
0
3 sin λ3 l3ð Þ�λ23B

0
3 cos λ3 l3ð Þþλ23C

0
3 sinh λ3 l3ð Þþλ23D

0
3 cosh λ3 l3ð Þ ¼ 0 (57)
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0
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0
3 sin λ3 l3ð Þþλ33C

0
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0
3 sinh λ3 l3ð Þ ¼ 0 (58)

Eqs. (57) and (58) can be written in the matrix form
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where
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Fig. 4. FE model of a cracked cantilever beam.
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Substituting Eq. (53) into (59) yields

0
0
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(61)

Let

R¼ BT�1
4 T3T

�1
2 T1 ¼

R11 R12 R13 R14

R21 R22 R23 R24

" #
(62)

Use of Eqs. (56), (61), and (62) yields

R11�R13 R12�R14

R21�R23 R22�R24

" #
A0
1

B0
1

( )
¼ 0

0

� �
(63)

Existence of a non-trivial solution of Eq. (63) requires

det
R11�R13 R12�R14

R21�R23 R22�R24

" #
¼ 0 (64)

which is the frequency equation of the three-segment beam model f(ω)¼0. The natural frequencies of the beam ωn, where
n is the mode number, can be obtained from the frequency equation using Newton–Raphson method. The initial guesses of
ωn are chosen to be close to the roots of the frequency equation, which can be obtained by plotting the function f(ω) and
finding the approximate roots of f(ω)¼0. By Eqs. (48)-(53), (61), and (64), and assuming B0

1 has an arbitrary known value,
one can obtain all the other constants of A0

k, B
0
k, C

0
k, and D0

k (k¼1, 2, 3) in wk(x) in Eq. (46). The normalized mode shapes of the
beam are defined by

ŵn xð Þ ¼ wn xð Þ
max wn xð Þð Þ (65)
4. Numerical results

4.1. Verification of the J-integrals

To verify the analytical expressions of the J-integrals in Eqs. (28) and (32), nondimensional numerical results of the J-
integrals surrounding the two crack tips are calculated using commercial FE software [57]. Two-dimensional (2D) singular
elements PLANE183, which are six-node shell elements with two degrees of freedom at each node, are used around the
crack tips of the cantilever beam. The other parts of the beam are modeled using 2D plane strain solid elements PLANE42.
The FE model of a cracked cantilever beam is shown in Fig. 4. The parameters used are P¼1, E¼1, h/L¼0.05, and L2/L¼0.1,
with various ratios of Xc/L and h1/h; the Poisson’s ratio of the beam is assumed to be ν¼0.3. Table 1 shows the comparison of
the nondimensional plane stress results of the J-integrals corresponding to the right and left crack tips from the FE method,
which are obtained by dividing the calculated plane strain ones by 1�ν2, and the nondimensional results of the J-integrals

corresponding to the right and left crack tips defined by
_
J ¼ Eh3= P2L2

� �� �
Jr ¼ Eh3= P2L2

� �� �
Jl, where Jr and Jl are deter-

mined by Eqs. (28) and (32), respectively. Since there are small differences between the FE results of the J-integrals



J. Liu et al. / Journal of Sound and Vibration 382 (2016) 274–290 283
corresponding to the right and left crack tips, their mean values are compared with the analytical results. The numerical
results show that the differences between the two methods are less than 3.8%, which demonstrates that Eqs. (28) and (32)
are valid for Euler–Bernoulli beam segments. Since the top and bottom segments are assumed to have the same transverse
displacements and they can slide over each other in the axial direction except at their ends, the stress intensity factors KII

from the FE and proposed methods are compared to verify the proposed J-integral approach, as shown in Table 2. The results
show that the differences between the two methods are less than 2%, which further demonstrates that the proposed J-
integral approach is valid for Euler–Bernoulli beam segments.

4.2. Effect of local flexibilities at crack tips on natural frequencies and mode shapes of a cracked cantilever beam

Consider a cracked cantilever beam with L¼600 mm, h¼b¼10 mm, E¼2.06�1011 N/m2, and ρ¼7800 kg/m3. The first
three natural frequencies of the beam without the crack are ω01¼23.060 Hz, ω02¼144.516 Hz, and ω03¼404.649 Hz. The
ratios of the first three natural frequencies of the three-segment beam and the corresponding one without local flexibilities
at the crack tips to those of the beam without the crack are compared, as shown in Table 3. While the natural frequencies
from the three-segment beam models with and without local flexibilities at the crack tips decrease with the length and
depth of the crack, the differences between the natural frequencies from the three-segment beam models with and without
local flexibilities at the crack tips range from 0.048% to 2.949%.

Fig. 5 shows the comparison of the first three normalized mode shapes of the cracked cantilever beam with X1/L¼0.25,
h1/h¼0.4, and L2/L¼0.1 from the three-segment beam models with and without local flexibilities at the crack tips (a–c) and
their single-level SWT decomposition detail coefficients [58,59] calculated using the MATLAB program SWT (d–f); the crack
is located between points A and B, and the normalized mode shapes from the three-segment beam model without local
flexibilities at the crack tips can be obtained from the results in Section 3 with c1¼c2¼0. The differences between the first
three normalized mode shapes from the two models in Fig. 5(a–c) increase with the crack length, as well as those between
the corresponding SWT decomposition detail coefficients of the three mode shapes in (d–f). The effects of the local flex-
ibilities at the crack tips on the first three mode shapes and their SWT decomposition detail coefficients increase with the
crack length. Hence, the local flexibilities at the crack tips should be considered in the cantilever beam model.

4.3. Effects of the crack length, location, and depth on the mode shapes of the cracked cantilever beam

The effects of the crack length, location, and depth on single-level SWT decomposition detail coefficients of the first three
normalized mode shapes of the cracked cantilever beam are shown in Figs. 6–8, respectively. The crack lengths and loca-
tions can be clearly and directly identified from kinks in the single-level SWT decomposition detail coefficients of the first
three normalized mode shapes of the beam, where the cracks are located between points a and b, points a and c, and points
a and d in Fig. 6; between points a and d, points b and e, and c and f in Fig. 7; and between points a and b in Fig. 8. It can be
seen that the amplitudes of the kinks slightly increase with the crack depth in Fig. 8.
5. Experimental validation and numerical verification

To validate the three-segment beam model, a cracked acrylonitrile butadiene styrene beam of length 111.4 mm, height
5.2 mm, and width 10.5 mm is made by a 3D printer, as shown in Fig. 9(a). The length, height, and width of a horizontal,
rectangular crack are 16.6 mm, 0.3 mm, and 10.5 mm, respectively, as shown in Fig. 9(b). The distance between the left end
of the crack and the fixed end of the beam is 53.1 mm, and that between the top surface of the crack and the top surface of
beam is 2.6 mm.

An experimental setup is shown in Fig. 10. An operational modal analysis with non-contact excitation and measurement
is performed on the cracked beam. An electric speaker is used to generate acoustic excitation to the beam. Two Doppler laser
vibrometers are used to measure the response of the beam: Laser 1 and Laser 2 measure velocities of measurement points
Table 1
Comparison of the nondimensional results of the J-integrals corresponding to the right and left crack tips from the FE method and Eqs. (28) and (32),
respectively.

Xc/L h1/h FE method Eqs. (28) and (32) Difference (%)

Right Left Mean value

0.4 0.3 0.0257 0.0273 0.0265 0.0255 3.77
0.5 0.3 0.0258 0.0266 0.0262 0.0255 2.67
0.6 0.3 0.0265 0.0262 0.0264 0.0255 3.41
0.4 0.4 0.0386 0.0412 0.0399 0.0386 3.26
0.5 0.4 0.0390 0.0387 0.0389 0.0386 0.77
0.6 0.4 0.0392 0.0390 0.0391 0.0386 1.28



Table 2
Comparison of the stress intensity factors KII at the right and left crack tips from the FE and proposed methods.

Xc/L h1/h FE method Proposed method Difference (%)

Right Left Mean value

0.4 0.3 15.031 15.492 15.263 14.973 1.90
0.5 0.3 15.060 15.292 15.177 14.973 1.34
0.6 0.3 15.263 15.177 15.220 14.973 1.63
0.4 0.4 18.421 19.032 18.729 18.421 1.64
0.5 0.4 18.516 18.445 18.481 18.421 0.32
0.6 0.4 18.563 18.516 18.540 18.421 0.64

Table 3
Comparison between the first three natural frequencies from the three-segment beam models with and without local flexibilities at the crack tips.

X1/L�h1/h L2/L Three-segment beam models Natural frequency ratios

ω1/ω01 ω2/ω02 ω3/ω03

0.25�0.4 0.1 With local flexibilities 0.861 0.958 0.881
Without local flexibilities 0.857 0.959 0.879
Difference (%) 0.431 0.068 0.224

0.25�0.4 0.15 With local flexibilities 0.835 0.914 0.868
Without local flexibilities 0.820 0.915 0.863
Difference (%) 1.837 0.048 0.551

0.2�0.2 0.2 With local flexibilities 0.902 0.957 0.920
Without local flexibilities 0.890 0.961 0.915
Difference (%) 1.435 0.385 0.577

0.2�0.3 0.2 With local flexibilities 0.844 0.930 0.885
Without local flexibilities 0.820 0.936 0.878
Difference (%) 2.949 0.582 0.814
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and the velocity of a reference point on the beam, respectively. There are totally 129 measurement points on the beam,
which are evenly distributed along the length of beam. The third natural frequency and mode shape of the cracked beam are
measured using Operational PloyMax of LMS Test. Lab Rev. 9b.

The third natural frequencies form the experiment, the FE model, and the three-segment beam model are 1608 Hz,
1604.3 Hz, and 1600.7 Hz, respectively. The difference between the third natural frequency from the FE model and the
experiment is �0.25%, and that between the three-segment beam and the experiment is �0.45%. The fourth natural fre-
quency form the experiment, the FE model, and the three-segment beam model are 3124.2 Hz, 3179 Hz, and 2966.8 Hz,
respectively. The difference between the natural frequency from the FE model and the experiment is 1.72%, and that
between the three-segment beam and the experiment is �5.03%. Fig. 11 shows the third and fourth normalized mode
shapes from the experiment, the FE model, and the three-segment beam model and their SWT decomposition detail
coefficients. The third and fourth normalized mode shapes and their SWT decomposition detail coefficients from the
experiment agree very well with those from the FE model, and they are similar in shape to those from the three-segment
beam model. The spatial regions with abrupt changes of the SWT decomposition detail coefficients of the third and fourth
normalized mode shape from the experiment, the FE model, and the three-segment beam model correspond to the crack
region, as shown in Fig. 11(c and d), which can be used to identify the crack length and location. The results from the
experiment and the FE model validate and verify to some extent the three-segment beam model, respectively. Note that the
results from the FE model are overall closer to those from the experiment than the three-segment beam model. One reason
is that there is a non-zero height of the crack in the experiment and the FE model, which is not considered in the three-
segment beam model. Note also that the proposed analytical method is useful even though the FE method is available. For
example, such an analytical model can be easily implemented and run on a broad range of computational platforms,
requiring minimal computational resources such as dedicated software, while also executed at minimal computational costs
compared with the computational resources and costs required to run a fully tested FE model that can yield reliable con-
vergent solutions.
6. Conclusion

A new three-segment beam model with local flexibilities at crack tips is developed to investigate the vibration of a
cantilever beamwith a closed, fully embedded horizontal crack. The effect of the crack is modeled by local flexibilities at the
crack tips and a reduced bending moment of the middle segment of the beam containing the crack. The compliances at the
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Fig. 5. Comparison of the first three normalized mode shapes from the three-segment beam models with ( ) and without ( ) local flexibilities at the
crack tips and their SWT decomposition detail coefficients: (a) X1/L¼0.5, L2/L¼0.1, and h1/h¼0.4; (b) X1/L¼0.5, L2/L¼0.15, and h1/h¼0.4; (c) X1/L¼0.5, L2/
L¼0.2, and h1/h¼0.4; (d) X1/L¼0.5, L2/L¼0.1, and h1/h¼0.4; (e) X1/L¼0.5, L2/L¼0.15, and h1/h¼0.4; and (f) X1/L¼0.5, L2/L ¼0.2, and h1/h¼0.4 (To better
distinguish different line types in this figure legend, the reader is referred to the web version of this article.).

Fig. 6. Effect of the crack length on SWT decomposition detail coefficients of the first three normalized mode shapes of the beam with and without the
crack: , the beam without the crack; , X1/L¼0.5, L2/L¼0.1, and h1/h¼0.4; , X1/L¼0.5, L2/L¼0.15, and h1/h¼0.4; , X1/L¼0.5, L2/L¼0.2, and h1/
h¼0.4. (a) The first mode, (b) the second mode, and (c) the third mode. (To better distinguish different line types in this figure legend, the reader is referred
to the web version of this article.)
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crack tips are analytically determined using a J-integral approach. The natural frequencies and mode shapes of the three-
segment beam with local flexibilities at the crack tips are derived using compatibility conditions at the crack tips and the
transfer matrix method. The following conclusions can be obtained from this study:

) The values of the J-integrals along the contours of the left and right parts of the beam are the same for Euler–Bernoulli
beam segments. The equivalent rotational flexibility of the cross-section of the beam at the left crack tip is larger than
that at the right tip. The differences between the J-integral results from the analytical and FE methods are less than 3.8%.
The differences between the stress intensity factors KII from the analytical and FE methods are less than 2%.

) The differences between the natural frequencies from the three-segment beam models with and without local flexibilities
at the crack tips range from 0.048% to 2.949%.



Fig. 7. Effect of the crack location on SWT decomposition detail coefficients of the first three normalized mode shapes of the beam with and without the
crack: , the beamwithout the crack; , X1/L¼0.4, L2/L¼0.15, and h1/h¼0.4; , X1/L¼0.5, L2/L¼0.15, and h1/h¼0.4; , X1/L¼0.6, L2/L¼0.15, and h1/
h¼0.4. (a) The first mode, (b) the second mode, and (c) the third mode. (To better distinguish different line types in this figure legend, the reader is referred
to the web version of this article.)

Fig. 8. Effect of the crack depth on SWT decomposition detail coefficients of the first three normalized mode shapes of the beam with and without the
crack: , the beamwithout the crack; , X1/L¼0.5, L2/L¼0.15, and h1/h¼0.2; , X1/L¼0.5, L2/L¼0.15, and h1/h¼0.3; , X1/L¼0.5, L2/L¼0.15, and h1/
h¼0.4. (a) The first mode, (b) the second mode, and (c) the third mode. (To better distinguish different line types in this figure legend, the reader is referred
to the web version of this article.)

Fig. 9. (a) Dimensions of a cantilever beam with an embedded crack and (b) an enlarged view of the crack region.
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Fig. 10. An experimental setup for the cracked beam using operational modal analysis.

Fig. 11. The third normalized mode shapes from the experiment ( ), the FE model ( ), and the three-segment beam model ( ) and their SWT
decomposition detail coefficients: (a) the third mode shape; (b) the fourth mode shape; (c) SWT decomposition detail coefficients of the third mode shape;
and (d) SWT decomposition detail coefficients of the fourth mode shape. (To better distinguish different line types in this figure legend, the reader is
referred to the web version of this article.)
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) The differences between the first three normalized mode shapes from the three-segment beam models with and without
local flexibilities at the crack tips increase with the crack length, as well as those between the corresponding SWT
decomposition detail coefficients of the three mode shapes. The local flexibilities at the crack tips should be considered in
the cantilever beam model.

) The regions of abrupt changes of single-level SWT decomposition detail coefficients of normalized mode shapes of the
cracked cantilever beam correspond to the crack region, which can be used to identify the length and location of a closed,
fully embedded horizontal crack.
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Appendix A. Determination of the J-integral along the contour FEDCBA of the left part of the beam in Fig. 2(a)

The J-integral along the contour FEDCBA of the left part of the beam in Fig. 2(a) is the sum of line integrals along
segments FE, ED, DC, CB, and BA of the contour:

Jl ¼ JlBAþ JlCBþ JlDCþ JlEDþ JlFE (A1)

where the superscript l denotes the left part. For segments CB and ED, dY¼0 and Ti¼0; hence

JlCB ¼ 0; JlED ¼ 0 (A2)

For segment BA, one has

JlBA ¼
Z
BA

Wl
ABdy�Ti

∂ui
∂X ds

� �
¼
Z
BA

�Wl
ABds� T1

∂ul
1
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þT2

∂ul
2

∂X

 !
ds

 !
(A3)

where

Wl
BA ¼

1
2
σl
xx2ε

l
xx2þ

1
2
τlxy2γ

l
xy2 (A4)

in which σl
xx2 and τlxy2 are the normal and shear stresses on segment BA, respectively, εlxx2 and γlxy2 are the normal and shear

strains of segment BA, respectively, and the subscript 2 denotes the stress and strain components associated with segment
BA. They are given by

σl
xx2 ¼

N2

Ab
�M2

Ib
Y ; εlxx2 ¼

∂u1

∂X
¼ N2

EAb
�M2

EIb
Y

τlxy2 ¼
P2S Yð Þ
Ibt

; γlxy2 ¼
τlxy2
G

¼ ∂ul
1

∂Y
þ∂ul

2
∂X

¼ P2S Yð Þ
GIbt

(A5)

where ul
1 and ul

2 are the displacements of the beam segment of X1X2 in the X and Y directions, respectively. The relationship
between the displacements in the X and Y directions is

ul
1 ¼ u0l

1 �∂u0l
2

∂X
Y (A6)

where the superscript 0 denotes deflections along the centroidal axis of the bottom segment of X1X2. Differentiating Eq. (A6)
with respect to Y yields

∂ul
1

∂Y
¼ � ∂2u0l

2
∂X∂Y

Y�∂u0l
2

∂X
¼ �∂u0l

2
∂X

¼ �∂ul
2

∂X
(A7)

where ∂2u0l
2

∂X∂Y ¼ 0. For the cracked cantilever beam, the rotational angle of the cross-section BA is assumed to be the sum of the
rotational angle of the cross-section at X1 relative to that at X0 and the rotational angle of the cross-section at Xc relative to
that at X1:

∂ul
2

∂X
¼ �PL21

2EI
�P L�L1ð ÞL1

EI
�P2a2

2EIb
þM2a

EIb
(A8)

Then

γlxy2 ¼
∂ul

2
∂X

¼ �PL21
2EI

�P L�L1ð ÞL1
EI

�P2a2

2EIb
þM2a

EIb
(A9)

The traction vector components for segment BA are given by

T1 ¼ σ11n1þσ12n2 ¼ �σ11; T2 ¼ σ21n1þσ22n2 ¼ �σ21 (A10)

Use of Eqs. (A4)–(A9) in Eq. (A3) yields

JlBA ¼
Z
AB

1
2
σlxx1ϵ

l
xx1 dYþ

Z
AB

τlxy1
∂ul

1
∂X

dY

¼ N2
2

2EAb
þ M2

2

2EIb
þPP2L

2
1

2EI
þPP2 L�L1ð ÞL1

EI
þP2

2a
2

2EIb
þP2M2a

EIb
(A11)

Similarly, the line integral along segment FE is

JlFE ¼
Z
FE

1
2
σlxx2ϵ

l
xx2dyþ

Z
FE

τlxy2
∂ul

2
∂X

dY
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¼ N2
1

2EAt
þ M2

1

2EIt
þPP1L

2
1

2EI
þPP1 L�L1ð ÞL1

EI
þP2

1a
2

2EIt
þP1M1a

EIt
(A12)

For segment DC

JlDC ¼
Z
DC
Wl

DCdY�Ti
∂ui
∂Xds¼

Z
DC

Wl
DC� T1

∂ul1
∂X þT2

∂ul
2

∂X

� �� �
ds (A13)

where

Wl
DC ¼

1
2
σl
xx4ε

l
xx4þ

1
2
τlxy4γ

l
xy4 (A14)

in which the subscript 4 denotes the stress and strain components associated with segment DC. The normal stress, normal
strain, shear stress, and shear strain for segment DC are

σl
xx4 Yð Þ ¼MY

I
; ϵlxx4 Yð Þ ¼ σl

xx4

E
¼ ∂ul

1

∂X
¼MY

EI

τlxx4 ¼
PS Yð Þ
It1

; γlxx4 ¼
τlxx4
G

¼ ∂ul
1

∂Y
þ∂ul

2

∂X
¼ PS Yð Þ

GIt1
¼ 0 (A15)

where M¼-PL is the bending moment at the cross-section at X0. The traction vector components Ti for segment DC are

T1 ¼ σ11n1þσ12n2 ¼ σ11; T2 ¼ σ21n1þσ22n2 ¼ σ21 (A16)

Use of Eqs. (A15) and (A16) in Eq. (13) yields

JlDC ¼
Z
DC

Wl
DC� T1

∂ul
1

∂X þT2
∂ul2
∂X

� �� �
ds

¼
Z
DC

1
2
σl
xx4ϵ

l
xx4þ

1
2
τlxx4γ

l
xx4� σ11

∂ul1
∂X þσ21

∂ul
2

∂X

� �� �
ds

¼ �
Z
DC

1
2
σl
xx4ϵ

l
xx4 ds¼ � 6L2

Et1h
3P

2 (A17)

Substituting Eqs. (A2), (A3), (A11), (A12), and (A17) into Eq. (A1) yields

Jl ¼ JlBAþ JlCBþ JlDCþ JlEDþ JlFE ¼
h3

h31þ h�h1ð Þ3
�1

 !
6a2P2

Eh3
(A18)
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